Ahmadpour, A., Soleimani, K., Shokri, M., & Ghorbani, J. (2014). Comparison of the efficiency of three common supervised classification methods of satellite data in vegetation cover studies. Civilica. https://civilica.com/doc/1166233
Akhbari, M., Ranjbar, A., & Fatemi, S. M. B. (2006). Investigation of satellite image classification methods. Civilica. https://civilica.com/doc/1389513
Cao, C., Dragićević, S., & Li, S. (2019). Land-use change detection with convolutional neural network methods. Environments, 6(2), 25. https://doi.org/10.3390/environments6020025
Chen, Y., Li, X., & Zhang, S. (2020). Uncertainty analysis in land cover classification using deep learning. Remote Sensing, 12(15), 2345. https://doi.org/10.3390/rs12152345
Foody, G. M. (2010). Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment, 114(10), 2271-2285. https://doi.org/10.1016/j.rse.2010.05.003
Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. Proceedings of the 33rd International Conference on Machine Learning, 48, 1050-1059.
Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725-749. https://doi.org/10.1080/01431160110040323
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. https://doi.org/10.1016/j.isprsjprs.2019.04.015
Momeni, M., Saram, M. A., Latif, A. M., & Sheikhpour, R. (2020). Presenting a convolutional neural network based on dynamic adaptive fusion for noisy image classification. Signal and Data Processing, 46(17), 139-153.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing the accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.013
Rezaei, Y., Rezaei, A., Darke, F., & Azarafza, Z. (2021). Classification of polarimetric radar images based on a support vector machine and binary gravitational search algorithm. Signal and Data Processing, 47(18), 87-102.
Thanh Noi, P., & Kappas, M. (2018). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18. https://doi.org/10.3390/s18010018
Tikuye, B. G., Rusnak, M., Manjunatha, B. R., & Jose, J. (2023). Land use and land cover change detection using the Random Forest approach: The case of the Upper Blue Nile River Basin, Ethiopia. Global Challenges, 7, 2300155. https://doi.org/10.1002/gch2.202300155
Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104(52), 20666-20671. https://doi.org/10.1073/pnas.0704119104
Yousefi, S., Tazeh, M., Mirzaee, S., Moradi, H. R., & Tavangar, S. (2011). Comparison of different classification algorithms of satellite images in preparing land use maps (Case study: Noor County). Journal of Remote Sensing and GIS in Natural Resources, 3(2), 15-26