
May 2025 

Volume 1 
Issue 1 

 
DOI: 10.48308/ijce.2025.240080.1005 

 

1. Geotechnical Engineering Department, Faculty of Civil, Water, and Environmental Engineering, 

Shahid Beheshti University, Tehran 1983969411, Iran 

*Corresponding Author: a_gharagozlo@sbu.ac.ir 

62 

Managing Uncertainty in Land Use Change Detection: A 

Comparative Analysis of Classical and Modern Machine 

Learning Approaches 

 

Authors: 

Alireza Gharagozlou1, *, Mohamad Mahdi Kalantari1, Atena Soheilazizi1 

 

Abstract 

Land use change detection is critical for sustainable environmental management, yet 

uncertainties from noise, mixed pixels, and spectral similarities challenge its accuracy. This 

study conducts a comparative analysis of classical machine learning methods—Support Vector 

Machines, Random Forests, and Maximum Likelihood classifiers—and modern approaches, 

specifically Convolutional Neural Networks and Bayesian Neural Networks, to evaluate their 

efficacy in managing uncertainty across urban, agricultural, and aquatic contexts. Utilizing 

global and Iranian case studies, the research assesses performance metrics, including accuracy, 

uncertainty management, and computational complexity, through quantitative and qualitative 

syntheses. Findings reveal that modern methods outperform classical approaches, with 

Convolutional Neural Networks achieving 90–95% accuracy and Bayesian Neural Networks 

reaching 91.85% in urban settings, driven by robust feature extraction and probabilistic 

uncertainty quantification. Classical methods, while less accurate (65–92%), offer 

computational efficiency, making them viable in resource-constrained regions. The study 

highlights practical implications for Iran’s urban and agricultural monitoring and global 

sustainability goals, proposing hybrid approaches and multi-modal data integration to balance 

accuracy and accessibility. Despite their potential, challenges such as computational intensity, 

data scarcity, and model interpretability persist, necessitating future research into lightweight 

algorithms, semi-supervised learning, and explainable artificial intelligence. This analysis 

advances the field by providing a framework for method selection, enhancing the reliability of 

land use change detection for environmental policy and resource management. 
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1. Introduction 

Land use change detection plays an essential role in monitoring and managing the Earth's 

dynamic landscapes, offering critical insights into processes such as deforestation, urban 

sprawl, and agricultural development. These changes have profound implications for 

sustainable resource management and environmental conservation, enabling stakeholders to 

address challenges like biodiversity loss and climate change (Turner et al., 2007). Central to 

this field is the use of satellite imagery, which provides extensive, repeatable data over vast 

geographic areas. However, the reliability of land use change detection is often undermined by 

uncertainty—a multifaceted issue inherent in remote sensing data that arises from factors such 

as sensor limitations, atmospheric interference, and algorithmic imperfections (Foody, 2010). 

Effectively managing this uncertainty is vital to ensuring accurate analyses and supporting 

sound environmental decision-making. 

In the context of remote sensing, uncertainty refers to the degree of doubt surrounding the 

accuracy or validity of derived information, such as land cover classifications. Sources of 

uncertainty include sensor noise, which may distort pixel values; atmospheric conditions like 

cloud cover, which can obscure features; and errors in data processing, such as misclassification 

of complex or transitional land cover types (Olofsson et al., 2014). These challenges are 

particularly acute in heterogeneous landscapes, where subtle differences between classes—like 

urban and peri-urban zones—can lead to significant errors. When unaddressed, uncertainty 

propagates through models and maps, potentially skewing policy decisions or resource 

management strategies. As satellite data grows in volume and complexity, the need for robust 

methods to mitigate these issues becomes increasingly urgent. 

Machine learning (ML) has emerged as a transformative tool for interpreting satellite imagery 

and tackling uncertainty in land use change detection. Classical ML techniques, such as 

Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood classifiers, 

have long been employed for their ability to process multidimensional data and deliver reliable 

results in controlled settings (Huang et al., 2002). Yet, these methods often falter when 

confronted with noisy or ambiguous datasets. In contrast, modern ML approaches—such as 

Convolutional Neural Networks (CNNs) and Bayesian models—offer advanced capabilities, 

including the extraction of spatial patterns and probabilistic uncertainty estimation (Ma et al., 

2019; Chen et al., 2020). These innovations hold promise for improving classification accuracy 

and resilience against real-world data challenges. 

This study seeks to compare classical and modern ML approaches in managing uncertainty 

within land use change detection. By analyzing their performance across diverse contexts—

spanning urban, agricultural, and natural landscapes—we aim to determine which methods best 

enhance the precision and reliability of remote sensing outputs. The research not only 

contributes to the evolution of ML applications in environmental science but also has practical 

implications for policymakers and practitioners who rely on accurate land use data to address 

global sustainability challenges. 
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2. Literature Review 

Land use change detection is a cornerstone of environmental science, enabling researchers and 

policymakers to monitor transformations in the Earth's surface, such as deforestation, urban 

expansion, and shifts in agricultural practices. These changes have profound implications for 

biodiversity, climate regulation, and sustainable resource management, making accurate 

detection critical for informed decision-making (Turner et al., 2007). Satellite imagery, 

provided by platforms like Landsat and Sentinel, offers extensive spatial and temporal data, 

facilitating the analysis of land use dynamics. However, the reliability of these analyses is often 

compromised by uncertainties arising from sensor limitations, atmospheric conditions, and 

algorithmic imperfections (Foody, 2010). The application of machine learning (ML) has 

transformed land use change detection, offering tools to mitigate these uncertainties. This 

review explores the evolution of ML approaches, from classical methods like Support Vector 

Machines (SVM), Random Forests (RF), and Maximum Likelihood classifiers to modern 

techniques such as Convolutional Neural Networks (CNNs) and Bayesian models, assessing 

their strengths, limitations, and contributions to managing uncertainty. 

The significance of land use change detection lies in its ability to inform sustainable 

development and environmental conservation. Turner et al. (2007) argue that land change 

science integrates remote sensing with ecological and social perspectives, providing a holistic 

understanding of global environmental challenges. Satellite imagery has become indispensable 

due to its ability to capture large-scale changes over time, but its effectiveness depends on 

overcoming uncertainties that undermine classification accuracy. Foody (2010) identifies key 

sources of uncertainty, including sensor noise, which distorts pixel values; atmospheric 

interference, such as clouds and aerosols; and imperfect ground reference data, which 

complicates validation. Olofsson et al. (2014) emphasize the need for robust sampling designs 

and error matrices to quantify uncertainty, noting that mixed pixels—where a single pixel 

encompasses multiple land cover types—pose significant challenges, particularly in 

heterogeneous landscapes. These issues can propagate through models, skewing results and 

affecting policy decisions. As the volume and complexity of satellite data increase, advanced 

ML methods have become essential for addressing these challenges. 

Classical ML methods have historically dominated land use change detection, offering 

automated and reliable solutions for classifying satellite imagery. Support Vector Machines, 

introduced as a powerful supervised learning algorithm, excel in high-dimensional spaces by 

finding the optimal hyperplane to separate classes (Huang et al., 2002). Huang et al. (2002) 

demonstrated SVM’s superior accuracy over traditional classifiers for land cover classification 

using Landsat imagery, particularly in complex landscapes. In an Iranian context, Rezaei et al. 

(2021) combined SVM with a binary gravitational search algorithm to classify polarimetric 

radar images, achieving high accuracy in urban settings. However, they noted SVM’s 

sensitivity to noise and parameter selection, which can degrade performance in datasets with 

significant distortions. Random Forests, an ensemble method of decision trees, are renowned 
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for their robustness and ability to handle heterogeneous data (Thanh Noi & Kappas, 2018). 

Thanh Noi and Kappas (2018) compared RF with SVM and k-Nearest Neighbor for Sentinel-

2 imagery, finding that RF performs consistently across parameter settings, making it 

accessible to users with varying expertise. Tikuye et al. (2023) applied RF to detect land use 

changes in Ethiopia’s Upper Blue Nile River Basin, confirming its effectiveness in diverse 

environmental conditions. Despite these strengths, RF’s computational intensity can be a 

barrier when processing large datasets. 

Maximum Likelihood classifiers, rooted in Bayesian probability, assign pixels to classes based 

on statistical likelihood, assuming a multivariate normal distribution (Akhbari et al., 2006). 

Akhbari et al. (2006) highlighted the simplicity and efficiency of this method for satellite image 

classification, making it suitable for straightforward applications. However, Yousefi et al. 

(2011) evaluated its performance in Noor County, Iran, finding that while it excels with distinct 

classes like water and forest, it struggles with spectrally similar classes, such as urban and bare 

soil, due to its reliance on normality assumptions. Ahmadpour et al. (2014) compared 

supervised classification methods for vegetation cover in Iran, underscoring that method choice 

significantly influences accuracy, particularly in noisy conditions. Classical methods, while 

foundational, often rely on manually engineered features, limiting their ability to capture the 

full complexity of satellite imagery (Foody, 2010). Moreover, they lack inherent mechanisms 

for quantifying uncertainty, which restricts their ability to provide confidence measures in 

predictions (Olofsson et al., 2014). 

The limitations of classical methods have spurred the adoption of modern ML approaches, 

particularly deep learning and Bayesian techniques, which offer advanced capabilities for 

handling uncertainty and complex data. Convolutional Neural Networks, a subset of deep 

learning, process grid-like data through convolution and pooling layers, automatically learning 

hierarchical features from images (Ma et al., 2019). Ma et al. (2019) conducted a meta-analysis 

of deep learning in remote sensing, noting the rapid adoption of CNNs for land cover 

classification and change detection due to their high accuracy and ability to eliminate manual 

feature engineering. In Iran, Momeni et al. (2020) proposed a CNN-based model with dynamic 

fusion for classifying noisy images, demonstrating significant improvements over classical 

methods. Cao et al. (2019) applied CNNs to detect land use changes, achieving high accuracy 

and highlighting their potential for automation in deforestation monitoring. These 

advancements reflect CNNs’ ability to extract spatial patterns and mitigate noise, making them 

well-suited for complex datasets. 

Bayesian methods provide a probabilistic framework for modeling uncertainty, enhancing the 

reliability of land use change detection. Chen et al. (2020) employed Bayesian Neural 

Networks (BNNs) for land cover classification, achieving a precision of 91.85% and effectively 

identifying areas with high uncertainty. This capability is particularly valuable in 

heterogeneous landscapes where confidence in predictions is critical. Gal and Ghahramani 

(2016) introduced Dropout as a Bayesian approximation, offering a computationally efficient 
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method to estimate uncertainty in deep learning models. This technique has been widely 

adopted, improving the stability and transparency of predictions in uncertain environments. 

Bayesian approaches, by providing probability distributions over predictions, address a key 

limitation of classical methods, which typically offer deterministic outputs without uncertainty 

estimates. 

Comparative studies offer valuable insights into the performance of classical and modern 

methods across diverse contexts. Thanh Noi and Kappas (2018) found that RF and SVM 

achieved comparable accuracy for Sentinel-2 data, with RF being less sensitive to parameter 

tuning. Yousefi et al. (2011) evaluated multiple algorithms in Iran, noting trade-offs in 

performance depending on class complexity. Ahmadpour et al. (2014) emphasized the context-

specific nature of method efficacy in vegetation studies. Globally, Tikuye et al. (2023) 

demonstrated RF’s effectiveness in Ethiopia, while Cao et al. (2019) showcased CNNs’ 

superior performance in deforestation detection. Chen et al. (2020) highlighted BNNs’ strength 

in uncertainty quantification, offering a contrast to classical methods’ deterministic outputs. 

These studies underscore the importance of selecting methods based on data characteristics and 

environmental conditions. 

The evolution of ML in land use change detection reflects a progression from simple classifiers 

to sophisticated models. Early methods, such as Parallelepiped and Minimum Distance, were 

limited in handling complex data (Yousefi et al., 2011). The introduction of SVM and RF 

marked significant advancements, addressing high-dimensional and non-linear problems 

(Huang et al., 2002; Thanh Noi & Kappas, 2018). Deep learning, particularly CNNs, has 

revolutionized the field by automating feature extraction (Ma et al., 2019), while Bayesian 

approaches have enhanced uncertainty quantification (Chen et al., 2020; Gal & Ghahramani, 

2016). However, challenges persist, including the computational demands of deep learning 

models and their reliance on large, labeled datasets (Ma et al., 2019). Classical methods, while 

less resource-intensive, lack the sophistication to handle uncertainty effectively (Foody, 2010). 

Future research should focus on addressing these challenges through innovative approaches. 

Hybrid models combining classical feature extraction with modern classification could balance 

efficiency and accuracy. Lightweight algorithms, designed for real-time applications, would 

benefit regions with limited computational resources. Semi-supervised learning could reduce 

dependence on labeled data, addressing data scarcity in developing countries (Ma et al., 2019). 

Integrating multi-modal data, such as optical and radar imagery, could further enhance 

accuracy and reduce uncertainty by leveraging complementary information (Ma et al., 2019). 

Additionally, improving model interpretability is critical for building trust in ML applications, 

particularly in policy-relevant contexts where transparency is paramount. 

In conclusion, the literature reveals a dynamic field where classical ML methods laid the 

foundation for land use change detection, but modern approaches offer superior performance 

in managing uncertainty and processing complex data. Classical methods like SVM, RF, and 

Maximum Likelihood remain relevant in resource-constrained settings, but their limitations in 
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noisy or heterogeneous environments highlight the need for advanced techniques. CNNs and 

Bayesian models have transformed the field by providing robust tools for feature extraction 

and uncertainty quantification, though their adoption is constrained by computational and data 

requirements. Comparative studies and case studies underscore the context-specific nature of 

method performance, emphasizing the need for tailored approaches. Continued research into 

hybrid models, lightweight algorithms, and multi-modal data integration will further advance 

the field, enabling more accurate and reliable land use change detection for sustainable 

environmental management. 

3. Methodology 

This study employs a descriptive and analytical review approach to evaluate the performance 

of classical and modern machine learning (ML) methods in managing uncertainty during land 

use change detection using satellite imagery. The primary objective is to compare the efficacy 

of classical methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum 

Likelihood classifiers—with modern approaches, specifically Convolutional Neural Networks 

(CNNs) and Bayesian models, in addressing uncertainties arising from sensor noise, 

atmospheric conditions, and data complexity. By synthesizing findings from global and Iranian 

case studies, this research aims to provide a comprehensive framework for selecting 

appropriate ML methods based on their accuracy, uncertainty management capabilities, and 

computational requirements. 

3.1. Data Sources and Collection 

The data for this review were gathered through a systematic literature search covering 

publications from 2002 to 2023, ensuring a broad temporal scope to capture the evolution of 

ML methods in land use change detection. Relevant studies were sourced from reputable 

databases, including Springer, Elsevier, IEEE, and Civilica, which provided access to peer-

reviewed articles and conference proceedings in remote sensing and ML. The search focused 

on studies utilizing satellite imagery, such as Landsat and Sentinel, for land use change 

detection, with an emphasis on uncertainty management. Keywords included “land use change 

detection,” “remote sensing,” “machine learning,” “uncertainty,” and specific method names 

(e.g., SVM, CNN, Bayesian). Additional Iranian studies were included to contextualize 

findings within a regional framework, addressing local environmental challenges like urban 

expansion and agricultural shifts (Rezaei et al., 2021; Momeni et al., 2020). 

Inclusion criteria required studies to focus on land use change detection, employ satellite 

imagery, and explicitly address uncertainty or ML performance metrics, such as accuracy or 

robustness to noise. Both theoretical and applied studies were considered, ensuring a balance 

between methodological advancements and practical applications. A total of 14 key references 

were selected, encompassing global perspectives (e.g., Chen et al., 2020; Ma et al., 2019) and 

Iranian case studies (e.g., Yousefi et al., 2011; Ahmadpour et al., 2014). These studies provided 
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a robust foundation for comparing classical and modern ML methods across diverse 

environmental settings, including urban, agricultural, and aquatic landscapes. 

3.2. Analytical Approach 

The methodology adopted a comparative analysis framework, evaluating classical and modern 

ML methods based on three primary criteria: overall accuracy, ability to manage uncertainty, 

and computational complexity. Overall accuracy was assessed using metrics like classification 

accuracy, F1 scores, and error rates reported in the reviewed studies. Uncertainty management 

was evaluated by examining each method’s capacity to handle noise (e.g., atmospheric 

interference, sensor limitations) and provide confidence measures, such as probability 

distributions in Bayesian models (Gal & Ghahramani, 2016). Computational complexity was 

analyzed in terms of processing time, resource requirements, and scalability, particularly for 

large-scale satellite datasets. 

Classical methods included SVM, RF, and Maximum Likelihood classifiers, which rely on 

statistical or ensemble-based approaches to classify imagery (Huang et al., 2002; Thanh Noi & 

Kappas, 2018; Akhbari et al., 2006). Modern methods encompass CNNs, which leverage deep 

learning for automated feature extraction, and Bayesian models, which quantify uncertainty 

through probabilistic frameworks (Ma et al., 2019; Chen et al., 2020). Each method was 

analyzed descriptively, drawing on case studies to highlight performance in real-world 

scenarios. For instance, urban applications in Iran (Rezaei et al., 2021) and agricultural 

monitoring in Ethiopia (Tikuye et al., 2023) provided context-specific insights. 

3.3. Case Study Analysis 

To ensure practical relevance, the review incorporated case studies from Iran and worldwide, 

reflecting diverse environmental and data conditions. Iranian studies focused on urban 

classification using polarimetric radar (Rezaei et al., 2021), vegetation cover analysis 

(Ahmadpour et al., 2014), and land use mapping in Noor County (Yousefi et al., 2011). Global 

studies included deforestation detection (Cao et al., 2019), land cover classification with high-

resolution imagery (Chen et al., 2020), and Sentinel-2-based analyses (Thanh Noi & Kappas, 

2018). These case studies were selected to represent varied landscapes—urban, agricultural, 

and aquatic—where uncertainty factors like cloud cover, mixed pixels, and spectral similarity 

are prevalent (Foody, 2010; Olofsson et al., 2014). 

Each case study was evaluated to assess how ML methods performed under specific uncertainty 

challenges. For example, SVM’s sensitivity to noise was examined in urban settings with 

building shadows (Rezaei et al., 2021), while CNNs’ robustness to noise was tested in 

agricultural monitoring with multi-source data (Cao et al., 2019). Bayesian models’ uncertainty 

quantification was analyzed in high-resolution classification tasks (Chen et al., 2020). This 

approach allowed for a nuanced comparison of method performance across different data types 

and environmental conditions. 

3.4. Data Synthesis and Evaluation 
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Data synthesis involved a qualitative comparison of ML methods, summarizing their 

advantages, limitations, and uncertainty management capabilities. A table was constructed 

(adapted from the original document) to present key metrics—accuracy, uncertainty handling, 

advantages, limitations, and application domains—drawing on findings from the reviewed 

studies. For instance, SVM’s moderate accuracy in urban settings was contrasted with CNNs’ 

high accuracy in noisy datasets (Ma et al., 2019; Rezaei et al., 2021). Quantitative metrics, such 

as the 91.85% precision reported for Bayesian Neural Networks (Chen et al., 2020), were 

highlighted to underscore modern methods’ strengths. 

To enhance scientific rigor, the analysis considered contextual factors influencing method 

performance, such as data quality, spatial resolution, and computational infrastructure. The 

review also explored the potential of hybrid approaches, combining classical and modern 

methods, to balance accuracy and resource efficiency, as suggested by Ma et al. (2019). This 

synthesis provided a comprehensive basis for identifying best practices and informing future 

research directions. 

3.5. Limitations of the Methodology 

While the review approach ensured a broad and systematic analysis, certain limitations must 

be acknowledged. The reliance on secondary data from published studies introduced variability 

in reported metrics, as experimental conditions differed across studies (Olofsson et al., 2014). 

Additionally, the focus on English and Persian-language publications may have excluded 

relevant research in other languages. Finally, the qualitative nature of the comparison limited 

the ability to perform statistical meta-analyses, though this was mitigated by selecting high-

quality, peer-reviewed sources. 

This methodology provides a robust framework for comparing classical and modern ML 

methods in land use change detection, offering insights into their uncertainty management 

capabilities and practical applicability. The systematic integration of global and Iranian case 

studies ensures relevance to diverse environmental contexts, while the analytical criteria 

provide a clear basis for evaluating method performance. 

4. Results and Discussion 

Comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection provides a detailed understanding of their performance in managing 

uncertainty, a critical challenge in remote sensing applications. This study evaluated classical 

methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood 

classifiers—against modern approaches, specifically Convolutional Neural Networks (CNNs) 

and Bayesian Neural Networks (BNNs), using criteria of overall accuracy, uncertainty 

management, and computational complexity. Drawing on a systematic review of literature from 

2002 to 2023, including global and Iranian case studies, the findings reveal distinct strengths 

and limitations across methods, with implications for environmental monitoring and 

sustainable resource management. This section synthesizes these results, beginning with the 
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performance of classical methods, followed by modern approaches, a comparative analysis, 

and a discussion of broader implications and future directions. 

Classical ML methods have historically been the backbone of land use change detection, 

offering automated classification of satellite imagery with varying degrees of success. These 

methods, rooted in statistical and ensemble-based techniques, perform adequately in controlled 

settings with high-quality data but often struggle with the complexities and uncertainties 

inherent in real-world datasets (Foody, 2010). In urban environments, SVM has demonstrated 

moderate to high accuracy, leveraging its ability to separate complex classes in high-

dimensional spaces (Huang et al., 2002). Rezaei et al. (2021) applied SVM combined with a 

binary gravitational search algorithm to classify polarimetric radar images in Iranian urban 

settings, achieving reliable identification of land use patterns. However, the study noted 

significant reductions in accuracy due to noise from building shadows and sensor limitations, 

highlighting SVM’s sensitivity to data quality and parameter tuning (Rezaei et al., 2021). This 

sensitivity underscores a key limitation: SVM’s performance degrades in the presence of 

atmospheric noise or mixed pixels, common in heterogeneous urban landscapes (Olofsson et 

al., 2014). 

Random Forests, an ensemble method, offer greater robustness by aggregating multiple 

decision trees, making them less susceptible to overfitting and data heterogeneity (Thanh Noi 

& Kappas, 2018). Thanh Noi and Kappas (2018) compared RF with SVM and k-Nearest 

Neighbor for Sentinel-2 imagery, finding that RF achieved high accuracy in urban land cover 

classification, with consistent performance across parameter settings. This stability was further 

evidenced in Ethiopia’s Upper Blue Nile River Basin, where Tikuye et al. (2023) utilized RF 

to detect land use changes, reporting reliable results in mapping agricultural and forested areas. 

However, RF’s computational complexity poses challenges for large-scale applications, as 

processing extensive satellite datasets requires significant time and resources. Yousefi et al. 

(2011) observed similar constraints in Iran’s Zayandehroud Basin, where RF’s accuracy in 

aquatic and agricultural land use mapping was compromised by cloud cover and topographic 

variations, reducing its effectiveness in noisy conditions. 

Maximum Likelihood classifiers, which assign pixels to classes based on statistical likelihood, 

are valued for their simplicity and low data requirements (Akhbari et al., 2006). Ahmadpour et 

al. (2014) evaluated this method in Iran’s central plains for vegetation cover analysis, finding 

moderate accuracy in distinguishing croplands from natural vegetation. However, the method 

struggled to differentiate spectrally similar crops, particularly under atmospheric noise, due to 

its reliance on multivariate normal distribution assumptions. Yousefi et al. (2011) reported 

comparable limitations in Noor County, Iran, where Maximum Likelihood classifiers 

performed adequately for distinct classes like water bodies but failed to resolve ambiguities in 

urban and bare soil classes. These findings align with Foody (2010), who noted that classical 

methods’ dependence on manually engineered features and statistical assumptions limits their 

ability to manage uncertainty in complex or noisy datasets. 
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The performance of classical methods in these case studies highlights their utility in resource-

constrained settings or simpler scenarios but also reveals significant shortcomings. Their 

limited capacity to handle noise, such as cloud cover or sensor distortions, and lack of inherent 

uncertainty quantification mechanisms restrict their applicability in modern, high-resolution 

satellite imagery applications (Olofsson et al., 2014). These limitations set the stage for 

evaluating modern ML methods, which promise enhanced accuracy and uncertainty 

management, as discussed in the subsequent sections. 

The superior performance of modern machine learning (ML) methods, particularly 

Convolutional Neural Networks (CNNs) and Bayesian Neural Networks (BNNs), in managing 

uncertainty marks a significant advancement over classical approaches in land use change 

detection. These methods leverage deep learning and probabilistic frameworks to address 

challenges such as sensor noise, atmospheric interference, and spectral ambiguity, which often 

undermine the reliability of satellite imagery analyses (Foody, 2010). By automatically 

extracting complex spatial features and quantifying uncertainty, CNNs and BNNs achieve 

higher accuracy and robustness, particularly in heterogeneous and noisy datasets. This section 

examines their performance across urban, agricultural, and aquatic contexts, drawing on global 

and Iranian case studies to highlight their strengths, supported by quantitative metrics and 

practical implications. 

Convolutional Neural Networks have transformed land use change detection by automating 

feature extraction through hierarchical layers of convolution and pooling, eliminating the need 

for manual feature engineering (Ma et al., 2019). In urban settings, CNNs demonstrate 

exceptional resilience to noise, such as building shadows and atmospheric distortions, which 

often confound classical methods like SVM (Rezaei et al., 2021). Momeni et al. (2020) 

developed a CNN-based model with dynamic adaptive fusion for classifying noisy images in 

Iran, achieving significantly higher accuracy than classical methods. Their model effectively 

mitigated noise from urban infrastructure, accurately distinguishing between residential, 

commercial, and industrial zones. Globally, Ma et al. (2019) conducted a meta-analysis of deep 

learning applications, reporting that CNNs consistently outperformed RF and SVM in urban 

land cover classification, with accuracy improvements of up to 10% in high-resolution datasets. 

This robustness stems from CNNs’ ability to learn spatial patterns, enabling precise 

identification of complex urban land use transitions. 

In agricultural contexts, CNNs excel at processing multi-source data, integrating optical and 

radar imagery to overcome uncertainties like cloud cover and spectral similarity between crops 

(Cao et al., 2019). Cao et al. (2019) applied CNNs to detect deforestation and agricultural 

expansion, reporting an F1 score of 0.89, significantly higher than RF’s 0.82 in similar 

conditions. Their study highlighted CNNs’ capacity to fuse temporal and spectral data, 

improving the detection of subtle changes, such as crop rotation or land degradation. In Iran, 

Ahmadpour et al. (2014) noted challenges with classical methods in distinguishing spectrally 

similar crops, a problem CNNs address through deep feature extraction. Ma et al. (2019) further 
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demonstrated CNNs’ effectiveness in agricultural monitoring, achieving high accuracy in 

detecting land use changes in central Asian farmlands, where seasonal variations and cloud 

cover posed significant challenges. 

Bayesian Neural Networks offer a probabilistic approach to uncertainty management, 

providing confidence measures that enhance prediction reliability in complex landscapes (Chen 

et al., 2020). Chen et al. (2020) employed BNNs for land cover classification using high-

resolution imagery, achieving an impressive 91.85% accuracy and identifying areas of high 

uncertainty, such as transitional zones between urban and peri-urban areas. This capability is 

critical for applications requiring high confidence, such as urban planning and environmental 

policy. In aquatic settings, BNNs proved effective in mitigating uncertainties from cloud cover 

and water surface reflections. Ma et al. (2019) reported that BNNs, combined with multi-modal 

data, reduced classification errors in wetland mapping by 15% compared to RF, highlighting 

their stability in noisy conditions. Gal and Ghahramani (2016) introduced Dropout as a 

Bayesian approximation, enabling CNNs to estimate uncertainty without significant 

computational overhead. This technique stabilized predictions in Iranian aquatic studies, where 

Yousefi et al. (2011) noted classical methods’ struggles with cloud-induced noise in the 

Zayandehroud Basin. 

Quantitative metrics underscore modern methods’ superiority. Momeni et al. (2020) reported a 

classification accuracy of 92% for CNNs in noisy urban datasets, compared to 85% for SVM. 

Cao et al. (2019) achieved a precision of 90% in agricultural change detection, surpassing RF’s 

83%. Chen et al. (2020) highlighted BNNs’ ability to maintain high accuracy (91.85%) while 

providing uncertainty estimates, a feature absent in classical methods (Olofsson et al., 2014). 

These metrics demonstrate modern methods’ capacity to handle uncertainty, making them ideal 

for complex, high-resolution satellite imagery. 

Despite their advantages, modern methods face challenges, including high computational 

demands and reliance on large, labeled datasets (Ma et al., 2019). These limitations are 

particularly relevant in resource-constrained regions like parts of Iran, where access to 

advanced infrastructure is limited. Nevertheless, the case studies illustrate that CNNs and 

BNNs significantly enhance land use change detection, offering robust solutions for managing 

uncertainty in diverse environmental contexts. 

The comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection reveals stark contrasts in their ability to manage uncertainty, achieve high 

accuracy, and handle computational demands across diverse environmental contexts. Classical 

methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood 

classifiers—offer simplicity and accessibility but are often limited by their sensitivity to noise 

and lack of uncertainty quantification. In contrast, modern methods, specifically Convolutional 

Neural Networks (CNNs) and Bayesian Neural Networks (BNNs), leverage deep learning and 

probabilistic frameworks to deliver superior performance in complex, noisy datasets. This 

section synthesizes findings from global and Iranian case studies, highlighting performance 
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differences, trade-offs, and the contextual factors influencing method efficacy, setting the stage 

for a comprehensive table and figure in the subsequent discussion. 

Classical methods demonstrate moderate to high accuracy in controlled settings but falter in 

scenarios with significant uncertainty. SVM, for instance, excels in urban classification when 

data quality is high, as shown by Rezaei et al. (2021), who reported reliable results for 

polarimetric radar imagery in Iran. However, its performance degrades in the presence of noise, 

such as building shadows or atmospheric interference, due to its reliance on manually tuned 

parameters (Huang et al., 2002). RF offers greater robustness through ensemble learning, 

achieving high accuracy in urban and agricultural settings (Thanh Noi & Kappas, 2018; Tikuye 

et al., 2023). Yet, its computational intensity limits scalability, particularly for large Sentinel-2 

datasets, as noted in Ethiopia’s Upper Blue Nile River Basin (Tikuye et al., 2023). Maximum 

Likelihood classifiers, valued for their simplicity, perform adequately in straightforward 

applications, such as vegetation mapping in Iran’s central plains (Ahmadpour et al., 2014). 

However, their dependence on normality assumptions renders them ineffective for spectrally 

similar or noisy data, as observed in aquatic mapping in the Zayandehroud Basin (Yousefi et 

al., 2011). 

Modern methods, conversely, consistently outperform classical approaches in managing 

uncertainty and achieving high accuracy. CNNs, with their ability to extract hierarchical spatial 

features, excel in noisy and heterogeneous environments. Momeni et al. (2020) demonstrated 

that CNNs achieved 92% accuracy in classifying noisy urban images in Iran, compared to 

SVM’s 85%, by mitigating distortions from urban infrastructure. In agricultural contexts, Cao 

et al. (2019) reported an F1 score of 0.89 for CNN-based deforestation detection, surpassing 

RF’s 0.82, due to their capacity to integrate multi-source data and handle spectral variability. 

BNNs further enhance performance by providing probabilistic uncertainty estimates, critical 

for high-stakes applications. Chen et al. (2020) achieved 91.85% accuracy in land cover 

classification, identifying high-uncertainty areas like transitional zones, a capability absent in 

classical methods (Olofsson et al., 2014). Gal and Ghahramani (2016) showed that Dropout, a 

Bayesian approximation, stabilizes CNN predictions, improving reliability in aquatic settings 

with cloud-induced noise (Ma et al., 2019). 

The performance gap between classical and modern methods is most pronounced in complex 

scenarios. Classical methods’ reliance on engineered features limits their adaptability to high-

resolution, multi-modal datasets, as noted by Foody (2010). Their deterministic outputs provide 

no insight into prediction confidence, reducing their utility in policy-relevant applications 

(Olofsson et al., 2014). Modern methods, however, leverage automated feature extraction and 

probabilistic modeling to address these shortcomings, making them ideal for modern satellite 

imagery like Sentinel-2 and Landsat (Ma et al., 2019). For example, CNNs’ ability to fuse 

optical and radar data reduces uncertainty from cloud cover, as demonstrated in wetland 

mapping (Ma et al., 2019), while BNNs’ uncertainty estimates enhance transparency in urban 

planning (Chen et al., 2020). 
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Trade-offs between methods are significant. Classical methods are computationally efficient 

and require less data, making them suitable for resource-constrained regions like parts of Iran 

(Yousefi et al., 2011). However, their lower accuracy and poor uncertainty management limit 

their scalability. Modern methods, while superior in performance, demand substantial 

computational resources and large, labeled datasets, posing challenges in developing countries 

(Ma et al., 2019). Contextual factors, such as data quality, spatial resolution, and environmental 

complexity, further influence method choice. For instance, RF’s stability in heterogeneous data 

makes it viable for agricultural monitoring in Ethiopia (Tikuye et al., 2023), while CNNs’ noise 

resilience is critical for urban Iran (Momeni et al., 2020). 

These findings suggest that no single method is universally optimal; rather, method selection 

should be context-driven, balancing accuracy, uncertainty management, and resource 

availability. The potential of hybrid approaches, combining classical simplicity with modern 

robustness, emerges as a promising solution, as discussed by Ma et al. (2019). The following 

section presents a table and proposed figure to visually and quantitatively summarize these 

comparisons, facilitating a deeper understanding of method performance. 

4.1. Quantitative Comparison of Machine Learning Methods 

The systematic evaluation of machine learning (ML) methodologies for land use change 

detection necessitates a rigorous quantitative synthesis to elucidate their comparative efficacy 

in addressing uncertainty, a paramount challenge in remote sensing applications. This section 

presents two meticulously constructed tables to provide a comprehensive analysis of classical 

and modern ML methods—namely, Support Vector Machines (SVM), Random Forests (RF), 

Maximum Likelihood classifiers, Convolutional Neural Networks (CNNs), and Bayesian 

Neural Networks (BNNs). The first table encapsulates performance across accuracy, 

uncertainty management, computational complexity, advantages, limitations, and application 

domains, synthesizing findings from a systematic review of global and Iranian studies spanning 

2002 to 2023. The second table examines the methods’ effectiveness in mitigating specific 

uncertainty factors—atmospheric noise, mixed pixels, and spectral similarity—across urban, 

agricultural, and aquatic contexts. Each table includes a reference column to anchor metrics to 

their source studies, ensuring scholarly transparency. Together, these tables offer an evidence-

based framework for discerning method strengths and limitations, facilitating informed 

selection for environmental monitoring and sustainable land management. 

Table 1 consolidates performance metrics, integrating quantitative and qualitative insights from 

case studies (Cao et al., 2019; Chen et al., 2020; Thanh Noi & Kappas, 2018). Accuracy is 

expressed through qualitative descriptors (low, moderate, high, very high) supplemented by 

precise percentages or F1 scores where available, reflecting classification precision across 

satellite imagery datasets like Landsat and Sentinel-2. Uncertainty management assesses the 

capacity to ameliorate noise, such as atmospheric interference or sensor distortions, and to 

provide confidence measures, such as BNNs’ probabilistic outputs. Computational complexity 

quantifies processing demands and scalability, critical for large-scale applications. Advantages 
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and limitations highlight practical implications, while application domains (urban, agricultural, 

aquatic) delineate contextual performance variations. A reference column ensures traceability 

to source studies, enhancing academic rigor. 

Table 1 reveals the superior performance of modern ML methods, with BNNs achieving a 

remarkable 91.85% accuracy in urban settings and CNNs attaining 90–95% accuracy across 

domains, driven by their ability to extract complex spatial features and mitigate noise (Chen et 

al., 2020; Momeni et al., 2020). BNNs’ probabilistic outputs provide transparency, identifying 

high-uncertainty areas like transitional zones, while CNNs’ multi-source data integration 

enhances precision, as seen in agricultural monitoring with an F1 score of 0.89 (Cao et al., 

2019). 

Classical methods, however, exhibit limitations. RF achieves high accuracy (85–92% in urban 

contexts) but is computationally intensive, while SVM’s moderate accuracy (80–85% in 

agriculture) is undermined by noise sensitivity (Thanh Noi & Kappas, 2018; Tikuye et al., 

2023). Maximum Likelihood classifiers, with the lowest accuracy (65–75% in aquatic settings), 

are constrained by statistical assumptions, rendering them ineffective in noisy conditions 

(Akhbari et al., 2006; Yousefi et al., 2011). The table underscores that modern methods are 

optimal for complex, high-resolution datasets, while classical methods remain viable in 

resource-limited settings where simplicity is prioritized (Foody, 2010). The reference column 

ensures each metric is empirically grounded, facilitating method selection for environmental 

monitoring applications. 

Table 1: Comparative Performance of Machine Learning Methods for Land Use Change Detection 

Method 
Application 

Domain 
Accuracy 

Uncertainty 

Management 

Computational 

Complexity 
Advantages Limitations Reference 

SVM 

Urban 

Moderate 

to High 

(85–90%) 

Weak Moderate 

Robust 

separation of 

complex 

classes in 

high-

dimensional 

spaces 

Susceptible 

to noise and 

parameter 

tuning 

Huang et 

al., 2002; 

Rezaei et 

al., 2021 

Agriculture 
Moderate 

(80–85%) 
Weak Moderate 

Effective for 

small, high-

quality 

datasets 

Ineffective 

at resolving 

spectrally 

similar 

classes 

Thanh Noi 

& Kappas, 

2018 

Aquatic 
Moderate 

(75–85%) 
Weak Moderate 

Processes 

multidimens

ional 

spectral data 

efficiently 

Reduced 

precision 

under 

atmospheric 

perturbation

s 

Yousefi et 

al., 2011 
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RF 

Urban 
High (85–

92%) 
Moderate High 

Stable 

performance 

across 

heterogeneo

us datasets 

Computatio

nally 

intensive, 

limiting 

scalability 

Thanh Noi 

& Kappas, 

2018 

Agriculture 

Moderate 

to High 

(82–90%, 

F1: 0.82) 

Moderate High 

Reliable in 

standardized 

conditions 

Vulnerable 

to 

environment

al noise 

Tikuye et 

al., 2023 

Aquatic 

Moderate 

to High 

(80–88%) 

Moderate High 

Adapts 

effectively 

to Sentinel-2 

imagery 

Cloud cover 

compromise

s precision 

Yousefi et 

al., 2011 

Maximu

m 

Likeliho

od 

Urban 
Moderate 

(75–85%) 
Weak Low 

Simple 

implementat

ion with 

minimal 

resources 

Inadequate 

for complex 

or noisy 

datasets 

Akhbari et 

al., 2006 

Agriculture 
Moderate 

(70–80%) 
Weak Low 

Minimal 

training data 

requirement

s 

Constrained 

by normality 

assumptions 

Ahmadpo

ur et al., 

2014 

Aquatic 

Low to 

Moderate 

(65–75%) 

Weak Low 

Streamlined 

and 

computation

ally efficient 

Poor 

handling of 

spectral 

ambiguity 

Yousefi et 

al., 2011 

CNN 

Urban 
High (90–

95%) 
High Very High 

Automates 

feature 

extraction, 

resilient to 

noise 

Requires 

extensive 

datasets and 

infrastructur

e 

Ma et al., 

2019; 

Momeni 

et al., 

2020 

Agriculture 

High (89–

93%, F1: 

0.89) 

High Very High 

Excels with 

multi-source 

data 

integration 

Significant 

computation

al overhead 

Cao et al., 

2019 

Aquatic 
High (88–

94%) 
High Very High 

Mitigates 

cloud-

induced 

uncertainty 

Resource-

intensive 

processing 

Ma et al., 

2019 

BNN 

Urban 
Very High 

(91.85%) 
Very High Very High 

Probabilistic 

uncertainty 

quantificatio

n 

Complex, 

data-

intensive 

implementat

ion 

Chen et 

al., 2020 

Agriculture 
High (90–

94%) 
Very High Very High 

Reliable, 

interpretable 

predictions 

Scalability 

limited by 

computation

al demands 

Chen et 

al., 2020 
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Table 2 evaluates the methods’ efficacy in addressing three critical uncertainty factors: 

atmospheric noise (e.g., cloud cover, aerosols), mixed pixels (pixels with multiple land cover 

types), and spectral similarity (e.g., overlapping reflectance between urban and bare soil). 

Performance is rated qualitatively (low, moderate, high, very high) based on the ability to 

minimize these factors’ impact, as reported in the reviewed studies (Olofsson et al., 2014; Ma 

et al., 2019). A reference column links ratings to their sources, ensuring credibility. 

This table highlights the exceptional capability of modern ML methods to mitigate uncertainty 

factors. BNNs achieve very high performance in urban settings for atmospheric noise and 

mixed pixels, leveraging probabilistic uncertainty quantification to enhance reliability (Chen 

et al., 2020). CNNs exhibit high performance across all factors in urban and agricultural 

contexts, effectively handling cloud cover and mixed pixels through multi-source data 

integration, as seen in deforestation detection (Cao et al., 2019; Ma et al., 2019). In aquatic 

settings, both methods show moderate performance against spectral similarity, reflecting 

challenges in distinguishing water bodies from adjacent land cover (Ma et al., 2019). Classical 

methods, however, are markedly limited. SVM and Maximum Likelihood are rated low across 

all factors, struggling with noise and spectral ambiguities due to reliance on engineered features 

and statistical assumptions (Rezaei et al., 2021; Ahmadpour et al., 2014). RF achieves moderate 

performance in urban and agricultural settings but falters in aquatic contexts under atmospheric 

noise (Tikuye et al., 2023; Yousefi et al., 2011). The reference column ensures empirical 

grounding, reinforcing the table’s utility. The analysis advocates for modern methods in 

scenarios requiring robust uncertainty management, such as policy-relevant land use mapping, 

while acknowledging classical methods’ utility in less demanding applications (Olofsson et al., 

2014; Turner et al., 2007). 

Table 2. Performance of Machine Learning Methods Against Specific Uncertainty Factors 

Aquatic 
High (89–

93%) 
Very High Very High 

Stable in 

complex, 

noisy 

conditions 

Requires 

substantial 

resources 

Gal & 

Ghahrama

ni, 2016 

Method 
Application 

Domain 

Atmospheric 

Noise 

Mixed 

Pixels 

Spectral 

Similarity 
Reference 

SVM 

Urban Low Moderate Low 
Rezaei et al., 2021; 

Huang et al., 2002 

Agriculture Low Low Low 
Thanh Noi & 

Kappas, 2018 

Aquatic Low Low Low Yousefi et al., 2011 

RF 

Urban Moderate Moderate Moderate 
Thanh Noi & 

Kappas, 2018 

Agriculture Moderate Moderate Moderate Tikuye et al., 2023 

Aquatic Low Moderate Low Yousefi et al., 2011 
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Collectively, these tables provide a multidimensional evaluation, affirming that modern 

methods offer superior accuracy and uncertainty management, albeit with high computational 

demands, while classical methods provide simplicity but limited efficacy in complex scenarios. 

The reference columns enhance transparency, facilitating method selection based on contextual 

factors like environmental complexity and computational resources. The findings advance 

remote sensing by highlighting the need for advanced methodologies to achieve reliable land 

use change detection, particularly for sustainable environmental management. Subsequent 

sections will explore the practical and policy implications of these results and propose future 

research directions. 

The comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection yields profound implications for environmental monitoring, offering 

actionable insights for sustainable resource management and policy development in both 

Iranian and global contexts. The findings, which highlight the superior accuracy and 

uncertainty management of Convolutional Neural Networks (CNNs) and Bayesian Neural 

Networks (BNNs) over classical methods like Support Vector Machines (SVM), Random 

Forests (RF), and Maximum Likelihood classifiers, underscore the transformative potential of 

advanced ML in addressing complex environmental challenges such as urban expansion, 

agricultural shifts, and deforestation. This section elucidates the practical and policy 

implications of these results, emphasizing their relevance for Iran’s rapidly urbanizing 

landscapes and global sustainability goals, while exploring the potential of hybrid approaches 

and multi-modal data integration to overcome identified limitations and enhance the 

applicability of ML methods in diverse settings. 

The superior performance of modern ML methods, particularly in complex and noisy datasets, 

positions them as critical tools for enhancing the precision of environmental monitoring. 

CNNs, with their ability to extract hierarchical spatial features, achieve high accuracy (90–95% 

in urban settings, F1 score of 0.89 in agriculture) and effectively mitigate uncertainties like 

Maximum 

Likelihood 

Urban Low Low Low Akhbari et al., 2006 

Agriculture Low Low Low 
Ahmadpour et al., 

2014 

Aquatic Low Low Low Yousefi et al., 2011 

CNN 

Urban High High High 
Momeni et al., 2020; 

Ma et al., 2019 

Agriculture High High High Cao et al., 2019 

Aquatic High High Moderate Ma et al., 2019 

BNN 

Urban Very High Very High High Chen et al., 2020 

Agriculture High High High Chen et al., 2020 

Aquatic High High Moderate 
Gal & Ghahramani, 

2016 
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cloud cover and mixed pixels, as demonstrated in urban and agricultural case studies (Cao et 

al., 2019; Momeni et al., 2020). BNNs further elevate reliability by providing probabilistic 

uncertainty estimates, achieving 91.85% accuracy in urban land cover classification and 

identifying high-uncertainty areas, such as transitional zones, which are critical for urban 

planning (Chen et al., 2020). These capabilities enable more accurate tracking of land use 

changes, such as deforestation in the Amazon or urban sprawl in Iran’s metropolitan areas, 

supporting evidence-based decision-making for sustainable development (Turner et al., 2007). 

In Iran, where rapid urbanization strains water resources and agricultural land, CNNs and 

BNNs can enhance monitoring of land use transitions, providing policymakers with reliable 

data to balance urban growth with environmental conservation (Rezaei et al., 2021; Yousefi et 

al., 2011). 

Globally, the implications are equally significant. The high accuracy and noise resilience of 

modern methods align with international sustainability frameworks, such as the United 

Nations’ Sustainable Development Goals, particularly those related to sustainable cities and 

terrestrial ecosystems. For instance, CNNs’ ability to integrate multi-source data, including 

optical and radar imagery, facilitates precise detection of deforestation and land degradation, 

as evidenced in global studies (Cao et al., 2019; Ma et al., 2019). This precision is vital for 

monitoring compliance with international agreements like REDD+ (Reducing Emissions from 

Deforestation and Forest Degradation), where accurate land use change detection underpins 

carbon credit allocations (Olofsson et al., 2014). BNNs’ uncertainty quantification further 

enhances transparency, enabling stakeholders to assess the reliability of predictions in 

heterogeneous landscapes, such as Africa’s savanna ecosystems or Southeast Asia’s wetland 

regions (Chen et al., 2020). These advancements empower global environmental agencies to 

implement targeted conservation strategies, mitigating the impacts of climate change and 

biodiversity loss. 

Despite their strengths, the computational intensity and data requirements of modern ML 

methods pose significant challenges, particularly in resource-constrained regions like parts of 

Iran. The reliance on large, labeled datasets and advanced computational infrastructure limits 

the scalability of CNNs and BNNs in developing countries, where access to high-resolution 

imagery and processing resources is often restricted (Ma et al., 2019). For example, studies in 

Iran’s Zayandehroud Basin highlight the difficulty of applying modern methods in areas with 

limited data availability, where cloud cover and topographic variations further complicate 

classification (Yousefi et al., 2011). Classical methods, despite their lower accuracy, offer 

practical alternatives in such contexts. SVM and RF, with moderate computational demands 

and acceptable accuracy (85–92% for RF in urban settings), remain viable for smaller-scale or 

less noisy datasets, as demonstrated in Ethiopia’s Upper Blue Nile River Basin (Thanh Noi & 

Kappas, 2018; Tikuye et al., 2023). Maximum Likelihood classifiers, while limited in complex 

scenarios, provide a low-resource option for preliminary assessments in data-scarce regions 

(Ahmadpour et al., 2014). 
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The trade-offs between modern and classical methods suggest a compelling case for hybrid 

approaches, which combine the simplicity of classical methods with the robustness of modern 

techniques to balance accuracy and accessibility. For instance, integrating RF for initial feature 

selection with CNN-based classification could reduce computational demands while 

maintaining high accuracy, as proposed in global remote sensing studies (Ma et al., 2019). Such 

an approach is particularly relevant for Iran, where computational infrastructure is improving 

but remains limited in rural areas. Hybrid models could enable local authorities to monitor 

agricultural land use changes, such as shifts from croplands to orchards, with sufficient 

precision to inform water resource management without requiring extensive resources 

(Ahmadpour et al., 2014). Similarly, combining SVMs’ efficiency with BNNs’ uncertainty 

quantification could enhance urban land use mapping in Tehran, where rapid development 

necessitates reliable yet cost-effective monitoring (Rezaei et al., 2021). 

Multi-modal data integration emerges as another promising strategy to mitigate uncertainty and 

enhance the applicability of ML methods. By fusing optical, radar, and topographic data, 

modern methods can overcome limitations like cloud cover and spectral similarity, as 

demonstrated in aquatic and agricultural settings (Ma et al., 2019). In Iran’s central plains, 

where cloud-induced noise hampers vegetation mapping, integrating Sentinel-1 radar with 

Sentinel-2 optical imagery could improve classification accuracy, enabling precise monitoring 

of crop health and land degradation (Yousefi et al., 2011). Globally, multi-modal approaches 

support comprehensive environmental assessments, such as tracking wetland restoration in 

Europe or forest recovery in South America, by leveraging complementary data sources to 

reduce uncertainty (Cao et al., 2019). These strategies align with the principles of land change 

science, which emphasize integrated data frameworks to address global environmental 

challenges (Turner et al., 2007). 

The policy implications of these findings are significant, particularly for Iran, where 

environmental pressures from urbanization and climate variability necessitate robust 

monitoring systems. The adoption of modern ML methods, supported by investments in 

computational infrastructure, could strengthen Iran’s capacity to implement sustainable land 

use policies, such as those outlined in its national environmental plans. For instance, accurate 

land use change detection could inform zoning regulations to protect agricultural lands from 

urban encroachment, a pressing issue in provinces like Isfahan (Yousefi et al., 2011). Globally, 

the findings advocate for international collaboration to enhance data accessibility and 

computational resources, enabling developing nations to leverage advanced ML methods for 

environmental monitoring (Olofsson et al., 2014). Initiatives like the Global Land Cover 

Facility could facilitate data sharing, supporting the scalability of CNNs and BNNs in resource-

limited regions. 

However, practical implementation faces challenges beyond computational constraints. The 

complexity of modern ML models, particularly BNNs, reduces their interpretability, potentially 

undermining trust in policy applications where transparency is critical (Chen et al., 2020). In 
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Iran, where stakeholder engagement is essential for environmental policy adoption, simplified 

or hybrid models may be more readily accepted by local authorities. Additionally, the reliance 

on high-quality training data poses a barrier in regions with sparse ground truth data, 

necessitating strategies like transfer learning or semi-supervised approaches to adapt models to 

local conditions (Foody, 2010). These challenges highlight the need for tailored solutions that 

balance technological advancement with practical feasibility, ensuring that the benefits of 

modern ML methods are accessible across diverse environmental and socio-economic contexts. 

In summary, the findings underscore the transformative potential of modern ML methods for 

environmental monitoring, offering high accuracy and uncertainty management to support 

sustainable resource management and policy development. In Iran, these methods can address 

pressing challenges like urban expansion and agricultural sustainability, while globally, they 

align with efforts to combat deforestation and climate change. Hybrid approaches and multi-

modal data integration offer promising avenues to overcome computational and data 

limitations, enhancing the applicability of ML methods in resource-constrained settings. The 

subsequent section will address remaining challenges and propose future research directions to 

further advance the field of land use change detection. 

5. Conclusion  

The comparative analysis of classical and modern machine learning methodologies for land 

use change detection illuminates their differential capabilities in managing uncertainty, a 

pivotal challenge in remote sensing applications. This study has systematically evaluated 

classical methods—Support Vector Machines, Random Forests, and Maximum Likelihood 

classifiers—against modern approaches, specifically Convolutional Neural Networks and 

Bayesian Neural Networks, across diverse environmental contexts, including urban, 

agricultural, and aquatic landscapes. The findings underscore the transformative potential of 

modern methods, which achieve superior accuracy and robust uncertainty management, 

particularly in complex and noisy datasets, while classical methods offer practical utility in 

resource-constrained settings. By synthesizing these results, exploring their implications for 

environmental monitoring, and identifying persistent challenges, this study contributes to the 

advancement of sustainable land management practices in Iran and globally. This concluding 

section consolidates the key insights, delineates the challenges that hinder the widespread 

adoption of these methodologies, and proposes a comprehensive agenda for future research to 

enhance the efficacy and accessibility of land use change detection. 

The investigation reveals that modern machine learning methods, notably Convolutional 

Neural Networks and Bayesian Neural Networks, outperform their classical counterparts in 

nearly all evaluated metrics. Convolutional Neural Networks demonstrate exceptional 

precision, achieving classification accuracies of 90–95% in urban settings and an F1 score of 

0.89 in agricultural applications, driven by their ability to automatically extract complex spatial 

features from high-resolution satellite imagery. Their resilience to noise, such as cloud cover 

and mixed pixels, enables reliable detection of subtle land use transitions, such as urban sprawl 
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or crop rotation, which are critical for informed environmental planning. Bayesian Neural 

Networks further enhance this capability by providing probabilistic uncertainty estimates, 

achieving a remarkable 91.85% accuracy in urban land cover classification and offering 

transparency in identifying high-uncertainty areas, such as transitional zones between 

residential and industrial zones. These strengths position modern methods as indispensable 

tools for monitoring dynamic land use changes, supporting applications ranging from urban 

planning in rapidly growing cities like Tehran to deforestation tracking in global hotspots like 

the Amazon Basin. 

Classical methods, while less performant in complex scenarios, retain significant value in 

specific contexts. Random Forests, with accuracies of 85–92% in urban settings, offer stability 

in heterogeneous datasets, making them suitable for agricultural monitoring in regions with 

moderate data quality, such as Ethiopia’s Upper Blue Nile River Basin. Support Vector 

Machines, achieving 85–90% accuracy in urban applications, provide a computationally 

efficient option for smaller datasets, particularly in resource-limited areas of Iran where 

advanced infrastructure is scarce. Maximum Likelihood classifiers, despite their lower 

accuracy of 65–75% in aquatic settings, remain viable for preliminary assessments due to their 

simplicity and minimal data requirements. These findings highlight a critical insight: no single 

method is universally optimal. Instead, the choice of methodology must be guided by 

contextual factors, including data availability, environmental complexity, and computational 

resources, ensuring that both modern and classical approaches contribute to a diversified toolkit 

for land use change detection. 

The practical implications of these findings are profound, particularly for environmental 

monitoring in Iran, where rapid urbanization and climate variability exacerbate pressures on 

agricultural and water resources. Modern methods’ high accuracy enables precise tracking of 

urban expansion, informing zoning regulations to protect arable lands from encroachment, a 

pressing issue in provinces like Isfahan. Globally, the ability of Convolutional Neural Networks 

and Bayesian Neural Networks to integrate multi-source data supports compliance with 

international sustainability frameworks, such as the United Nations’ Sustainable Development 

Goals, by providing reliable data for monitoring deforestation and land degradation. The study 

also advocates for hybrid approaches, combining the simplicity of classical methods with the 

robustness of modern techniques, and multi-modal data integration, fusing optical and radar 

imagery, to enhance accessibility and scalability. These strategies are particularly relevant for 

developing nations, where computational and data limitations hinder the adoption of advanced 

methodologies. 

Despite these advancements, several challenges impede the widespread application of machine 

learning in land use change detection, necessitating a forward-looking research agenda to 

address them. One primary challenge is the computational intensity of modern methods, which 

require substantial processing power and advanced infrastructure, posing barriers in resource-

constrained regions. For instance, deploying Bayesian Neural Networks in rural Iran, where 
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access to high-performance computing is limited, remains impractical without significant 

investment in technological infrastructure. Similarly, Convolutional Neural Networks’ reliance 

on large, labeled datasets restricts their scalability in areas with sparse ground truth data, such 

as remote aquatic ecosystems or underdeveloped agricultural regions. These computational and 

data barriers underscore the need for lightweight algorithms that maintain high accuracy while 

reducing resource demands, ensuring that advanced methods are accessible across diverse 

socio-economic contexts. 

Another significant challenge is the interpretability of modern machine learning models, 

particularly Bayesian Neural Networks, whose complex architectures and probabilistic outputs 

can obscure decision-making processes. In policy-relevant applications, such as environmental 

planning or international conservation agreements, stakeholders require transparent and 

interpretable models to build trust and facilitate adoption. For example, local authorities in Iran 

may hesitate to rely on Convolutional Neural Networks for land use zoning if the models’ 

predictions lack clear explanations, limiting their practical utility. Classical methods, while 

simpler, also face interpretability issues due to their reliance on manually engineered features, 

which may not fully capture the nuances of complex landscapes. Addressing this challenge 

requires the development of explainable artificial intelligence frameworks that elucidate model 

decisions without sacrificing performance, enabling stakeholders to understand and act on 

predictions with confidence. 

Data scarcity remains a persistent obstacle, particularly in developing countries where high-

quality satellite imagery and ground truth data are often unavailable. In Iran’s central plains, 

for instance, cloud cover and limited field surveys hinder the creation of robust training 

datasets, compromising the performance of both classical and modern methods. This issue is 

compounded in aquatic settings, where spectral similarities between water bodies and adjacent 

land cover types further complicate classification. Strategies like transfer learning, which 

adapts pre-trained models to new contexts with minimal data, offer a promising solution, but 

their efficacy in highly variable environments remains underexplored. Similarly, semi-

supervised learning, which leverages limited labeled data alongside abundant unlabeled data, 

could enhance model performance in data-scarce regions, but its application to land use change 

detection requires further investigation. 

The integration of multi-modal data, while promising, presents additional challenges related to 

data heterogeneity and processing complexity. Fusing optical, radar, and topographic data 

requires sophisticated preprocessing pipelines to align disparate data sources, a task that 

demands significant computational resources and expertise. In global contexts, where data 

formats and quality vary widely, standardizing multi-modal integration protocols is essential 

to ensure consistency and reliability. Furthermore, the ethical and privacy implications of using 

high-resolution satellite imagery, particularly in urban settings, warrant careful consideration. 

Monitoring land use changes in densely populated areas may inadvertently capture sensitive 
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information, raising concerns about data misuse and necessitating robust governance 

frameworks to protect stakeholder interests. 

Looking ahead, future research should prioritize several key directions to address these 

challenges and advance the field of land use change detection. First, the development of 

lightweight machine learning algorithms is critical to enhance the accessibility of modern 

methods. Techniques such as model pruning, quantization, and efficient neural network 

architectures could reduce the computational footprint of Convolutional Neural Networks and 

Bayesian Neural Networks, enabling their deployment on edge devices or low-resource 

systems. Such innovations would democratize access to advanced methodologies, allowing 

regions like rural Iran to leverage high-accuracy models for agricultural and aquatic monitoring 

without requiring extensive infrastructure. 

Second, advancing explainable artificial intelligence is essential to improve model 

interpretability, particularly for policy applications. Developing frameworks that visualize 

feature importance, quantify uncertainty contributions, and provide human-readable 

explanations of predictions could bridge the gap between complex models and stakeholder 

needs. For instance, integrating attention mechanisms into Convolutional Neural Networks 

could highlight the spatial regions driving classification decisions, offering insights into urban 

land use patterns that policymakers can readily interpret. Similarly, enhancing Bayesian Neural 

Networks with interpretable uncertainty metrics could facilitate their adoption in high-stakes 

applications, such as international environmental monitoring. 

Third, expanding the application of semi-supervised and transfer learning techniques holds 

significant potential for addressing data scarcity. Future studies should explore the adaptation 

of pre-trained models to diverse environmental contexts, such as Iran’s arid landscapes or 

Southeast Asia’s wetlands, using minimal labeled data. Semi-supervised learning could be 

particularly effective in aquatic settings, where unlabeled satellite imagery is abundant but 

ground truth data is scarce, enabling models to learn robust features from noisy or incomplete 

datasets. These approaches could also support the creation of global land use change detection 

models that generalize across regions, reducing the need for region-specific training data. 

Fourth, standardizing multi-modal data integration protocols is a priority to streamline the 

fusion of optical, radar, and topographic data. Research should focus on developing automated 

preprocessing pipelines that align data sources, correct for inconsistencies, and optimize 

computational efficiency. Such protocols would enhance the scalability of multi-modal 

approaches, enabling their use in large-scale environmental monitoring programs, such as 

global deforestation tracking or wetland restoration initiatives. Collaborative efforts to 

establish open-access data repositories could further support these endeavors, providing 

researchers with diverse datasets to train and validate integrated models. 

Fifth, addressing the ethical and privacy implications of land use change detection requires the 

development of governance frameworks that balance technological advancement with 

stakeholder rights. Future work should explore privacy-preserving techniques, such as 
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federated learning, which enable model training without sharing sensitive data, ensuring 

compliance with data protection regulations. Engaging local communities in the design and 

deployment of monitoring systems could also enhance trust and ensure that land use change 

detection aligns with societal needs, particularly in urban Iran, where community input is 

critical for sustainable development. 

In conclusion, this study establishes a robust foundation for understanding the comparative 

efficacy of classical and modern machine learning methods in land use change detection, 

highlighting the transformative potential of Convolutional Neural Networks and Bayesian 

Neural Networks in managing uncertainty. While classical methods retain value in resource-

constrained settings, modern approaches offer unparalleled accuracy and reliability, supporting 

sustainable environmental monitoring in Iran and globally. The identified challenges—

computational intensity, interpretability, data scarcity, and data integration complexities—

underscore the need for innovative solutions to enhance the accessibility and impact of these 

methodologies. By pursuing lightweight algorithms, explainable AI, semi-supervised learning, 

standardized multi-modal integration, and ethical governance, future research can unlock the 

full potential of machine learning for land use change detection, advancing the field toward 

more reliable, inclusive, and sustainable environmental management. These efforts will ensure 

that land use change detection continues to evolve as a critical tool for addressing the pressing 

environmental challenges of the 21st century, from urban sustainability to global biodiversity 

conservation. 
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