A State-of-the-Art Review on the Application of Shape-Memory Alloys for Performance Enhancement of Steel Structures

Document Type : Original Article

Authors

Department of Civil Engineering, Faculty of Engineering, Ayatollah Boroujerdi University, Boroujerd, 6919969737, Iran

10.48308/ijce.2026.243223.1019

Abstract

Steel structures are a fundamental component of construction projects worldwide, yet they continue to face challenges in mitigating seismic damage and ensuring long-term performance. Shape-memory alloys (SMAs) have emerged as a promising solution, offering unique properties that can significantly enhance the performance of steel structures. Despite years of research on SMA applications in this field, a comprehensive review paper is notably absent. This paper aims to fill this critical gap by systematically analyzing the latest advances in the field. To this end, this state-of-the-art review looks at how SMAs are revolutionizing steel structures by examining their application in various aspects, such as dampers for better vibration control, connections and joints for self-healing and stiffening, bracing systems for adaptive support, and seismic isolation for intelligent response. The topics raised in this review can serve as a valuable resource for engineers and researchers who seek to include SMAs in their designs and push the boundaries of innovation in steel structures.

Keywords


  1. Fang, C.; Wang, W.; Qiu, C.; Hu, S.; MacRae, G.A.; Eatherton, M.R. Seismic Resilient Steel Structures: A Review of Research, Practice, Challenges and Opportunities. J. Constr. Steel Res. 2022, 191, 107172, doi: 10.1016/j.jcsr.2022.107172.

    Romanenko, E.Y.; Vodolazskaya, N. V Engineering in Modern Construction. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1083, 012055, doi:10.1088/1757-899X/1083/1/012055.

    Hradil, P.; Talja, A.; Kurkela, J.; Fülöp, L.; Ongelin, P. Evaluation of Ductility Limits for Structural Steel Design. J. Constr. Steel Res. 2017, 135, 1–10, doi: 10.1016/j.jcsr.2017.03.022.

    Khalil, M.; Ruggieri, S.; Uva, G. Assessment of Structural Behavior, Vulnerability, and Risk of Industrial Silos: State-of-the-Art and Recent Research Trends. Appl. Sci. 2022, 12, doi:10.3390/app12063006.

    Goshtaei, S.M.; Moradi, S.; Hossain, K.M.A. Sensitivity Analysis of Self-Centering Column Base Connections with Shape Memory Alloy Bolts. Structures 2022, 38, 1050–1065, doi: 10.1016/j.istruc.2022.02.064.

    Samadian, D.; Muhit, I.B.; Occhipinti, A.; Dawood, N. Meta Databases of Steel Frame Buildings for Surrogate Modelling and Machine Learning-Based Feature Importance Analysis. Resilient Cities Struct. 2024, 3, 20–43, doi: 10.1016/j.rcns.2023.12.001.

    Shao, C.; Huang, Y. Advances in Shape Memory Alloy-Based Reinforcement in Steel Structures: A Review. Buildings 2023, 13, doi:10.3390/buildings13112760.

    Fang, H. Composite Structure of Steel and Shape Memory Alloy for Fire Resistance Design, Monash University, 2017.

    Fang, C.; Wang, W. Shape Memory Alloys for Seismic Resilience; Springer Singapore: Singapore, 2020; ISBN 978-981-13-7039-7.

    Qian, J.; Zheng, Y.; Dong, Y.; Wu, H.; Guo, H.; Zhang, J. Sustainability and Resilience of Steel – Shape Memory Alloy Reinforced Concrete Bridge under Compound Earthquakes and Functional Deterioration within Entire Life-Cycle. Eng. Struct. 2022, 271, 114937, doi: https://doi.org/10.1016/j.engstruct.2022.114937.

    Shadabfar, M.; Mahsuli, M.; Zhang, Y.; Xue, Y.; Ayyub, B.M.; Huang, H.; Medina, R.A. Resilience-Based Design of Infrastructure: Review of Models, Methodologies, and Computational Tools. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2022, 8, doi:10.1061/AJRUA6.0001184.

    Zhang, Z.-X.; Zhang, J.; Wu, H.; Ji, Y.; Kumar, D.D. Iron-Based Shape Memory Alloys in Construction: Research, Applications and Opportunities. Materials (Basel). 2022, 15, doi:10.3390/ma15051723.

    Mazzer, E.M.; da Silva, M.R.; Gargarella, P. Revisiting Cu-Based Shape Memory Alloys: Recent Developments and New Perspectives. J. Mater. Res. 2022, 37, 162–182, doi:10.1557/s43578-021-00444-7.

    Ozair, H.; Baluch, A.H.; ur Rehman, M.A.; Wadood, A. Shape Memory Hybrid Composites. ACS Omega 2022, 7, 36052–36069, doi:10.1021/acsomega.2c02436.

    Xin, X.; Liu, L.; Liu, Y.; Leng, J. Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites. Acta Mech. Solida Sin. 2019, 32, 535–565, doi:10.1007/s10338-019-00103-9.

    Dayyoub, T.; Maksimkin, A. V; Filippova, O. V; Tcherdyntsev, V. V; Telyshev, D. V Shape Memory Polymers as Smart Materials: A Review. Polymers (Basel). 2022, 14, doi:10.3390/polym14173511.

    Ghafoori, E.; Wang, B.; Andrawes, B. Shape Memory Alloys for Structural Engineering: An Editorial Overview of Research and Future Potentials. Eng. Struct. 2022, 273, 115138, doi: https://doi.org/10.1016/j.engstruct.2022.115138.

    Chowdhury, P. Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview. Shape Mem. Superelasticity 2018, 4, 26–40, doi:10.1007/s40830-018-0161-4.

    Mohammadgholipour, A.; Billah, A.M. Mechanical Properties and Constitutive Models of Shape Memory Alloy for Structural Engineering: A Review. J. Intell. Mater. Syst. Struct. 2023, 34, 2335–2359, doi:10.1177/1045389X231185458.

    Molod, M.A.; Spyridis, P.; Barthold, F.-J. Applications of Shape Memory Alloys in Structural Engineering with a Focus on Concrete Construction – A Comprehensive Review. Constr. Build. Mater. 2022, 337, 127565, doi: https://doi.org/10.1016/j.conbuildmat.2022.127565.

    Narjabadifam, P.; Noori, M.; Taciroglu, E.; Zhang, J.; Khoshnevis, B.; Cardone, D.; Basu, D.; Wang, T.; Elghandour, E.; Noroozinejad Farsangi, E.; et al. Sustainable Earthquake Resilience with the Versatile Shape Memory Alloy (SMA)-Based Superelasticity-Assisted Slider. Sensors 2022, 22, doi:10.3390/s22186876.

    Alam, M.S.; Youssef, M.A.; Nehdi, M. Utilizing Shape Memory Alloys to Enhance the Performance and Safety of Civil Infrastructure: A Review. Can. J. Civ. Eng. 2007, 34, 1075–1086, doi:10.1139/l07-038.

    Kandola, A.; Wong, J.; Bhandher, J.; Cowan, K.; Aldabagh, S. Structural Seismic Applications of Shape Memory Alloys: A Review. In; 2023; pp. 289–302.

    Wang, B.; Zhu, S. Superelastic SMA U-Shaped Dampers with Self-Centering Functions. Smart Mater. Struct. 2018, 27, 055003, doi:10.1088/1361-665X/aab52d.

    Tabrizikahou, A.; Hadzima-Nyarko, M.; Kuczma, M.; Lozančić, S. Application of Shape Memory Alloys in Retrofitting of Masonry and Heritage Structures Based on Their Vulnerability Revealed in the Bam 2003 Earthquake. Materials (Basel). 2021, 14, 4480, doi:10.3390/ma14164480.

    Fang, C.; Qiu, C.; Zheng, Y. Shape Memory Alloys for Civil Engineering. Materials (Basel). 2023, 16, 787, doi:10.3390/ma16020787.

    Rahman, J.; Billah, A.H.M.M. Seismic Performance Evaluation of Shape Memory Alloy (SMA) Reinforced Concrete Bridge Bents Under Long-Duration Motion. Front. Built Environ. 2020, 6, doi:10.3389/fbuil.2020.601736.

    Fang, C. SMAs for Infrastructures in Seismic Zones: A Critical Review of Latest Trends and Future Needs. J. Build. Eng. 2022, 57, 104918, doi: 10.1016/j.jobe.2022.104918.

    Kim, Y.C.; Lee, H.W.; Hu, J.W. Behavioral Characteristics Analysis of Pretension Damper with Superelastic Shape Memory Alloy. Case Stud. Constr. Mater. 2024, 20, e03121, doi: https://doi.org/10.1016/j.cscm.2024.e03121.

    Hooshmand, M.; Rafezy, B.; Khalil-Allafi, J. Seismic Retrofit in Building Structures Using Shape Memory Alloys. KSCE J. Civ. Eng. 2015, 19, 935–942, doi:10.1007/s12205-015-0261-z.

    Pan, Q.; Cho, C. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications. Sensors 2007, 7, 1887–1900, doi:10.3390/s7091887.

    Cao, S.; Yi, J. Shape Memory Alloy-Spring Damper for Seismic Control and Its Application to Bridge with Laminated Rubber Bearings. Adv. Struct. Eng. 2021, 24, 3550–3563, doi:10.1177/13694332211033955.

    Aghajani, M.; Asadi, P. Life-Cycle Cost Analysis of Steel Frames with Shape-Memory Alloy Based Dampers. Structures 2023, 52, 794–812, doi: 10.1016/j.istruc.2023.04.022.

    Yan, Z.; Ramhormozian, S.; Clifton, G.C.; Zhang, R.; Xiang, P.; Jia, L.-J.; MacRae, G.A.; Zhao, X. Numerical Studies on the Seismic Response of a Three-Storey Low-Damage Steel Framed Structure Incorporating Seismic Friction Connections. Resilient Cities Struct. 2023, 2, 91–102, doi: 10.1016/j.rcns.2023.02.007.

    Li, J.; Wang, W. Seismic Design of Low-Rise Steel Building Frames with Self-Centering Hybrid Damping Connections. Resilient Cities Struct. 2022, 1, 10–22, doi: 10.1016/j.rcns.2022.06.002.

    Torabipour, A.; Asghari, N.; Haghighi, H.; Yaghoubi, S.; Urgessa, G. Assessing Effectiveness of Shape Memory Alloys on the Response of Bolted T-Stub Connections Subjected to Cyclic Loading. CivilEng 2023, 4, 105–133, doi:10.3390/civileng4010008.

    Wu, Z.Y.; He, X.H.; Zhang, Y.C. Steel Beam-to-Column Connections Using Martensite Shape Memory Alloys. Adv. Mater. Res. 2011, 243–249, 662–665, doi: 10.4028/www.scientific.net/AMR.243-249.662.

    Wang, W.; Chan, T.-M.; Shao, H. Numerical Investigation on I-Beam to CHS Column Connections Equipped with NiTi Shape Memory Alloy and Steel Tendons under Cyclic Loads. Structures 2015, 4, 114–124, doi: 10.1016/j.istruc.2015.08.005.

    Izadi, M.; Motavalli, M.; Ghafoori, E. Iron-Based Shape Memory Alloy (Fe-SMA) for Fatigue Strengthening of Cracked Steel Bridge Connections. Constr. Build. Mater. 2019, 227, 116800, doi: https://doi.org/10.1016/j.conbuildmat.2019.116800.

    Chowdhury, M.A.; Rahmzadeh, A.; Moradi, S.; Alam, M.S. Feasibility of Using Reduced Length Superelastic Shape Memory Alloy Strands in Post-Tensioned Steel Beam–Column Connections. J. Intell. Mater. Syst. Struct. 2019, 30, 283–307, doi:10.1177/1045389X18806393.

    Chang, W.-S.; Araki, Y. Use of Shape-Memory Alloys in Construction: A Critical Review. Proc. Inst. Civ. Eng. - Civ. Eng. 2016, 169, 87–95, doi:10.1680/jcien.15.00010.

    Farmani, M.A.; Ghassemieh, M. Shape Memory Alloy-Based Moment Connections with Superior Self-Centering Properties. Smart Mater. Struct. 2016, 25, 075028, doi:10.1088/0964-1726/25/7/075028.

    Babaei, S.; Zarfam, P. Optimization of Shape Memory Alloy Braces for Concentrically Braced Steel Braced Frames. Open Eng. 2019, 9, 697–708, doi:10.1515/eng-2019-0084.

    Zareie, S.; Hamidia, M.; Zabihollah, A.; Ahmad, R.; Dolatshahi, K.M. Design, Validation, and Application of a Hybrid Shape Memory Alloy-Magnetorheological Fluid-Based Core Bracing System under Tension and Compression. Structures 2022, 35, 1151–1161, doi: 10.1016/j.istruc.2021.08.094.

    Haque, A.B.M.R.; Alam, M.S. Hysteretic Behaviour of a Piston Based Self-Centering (PBSC) Bracing System Made of Superelastic SMA Bars – A Feasibility Study. Structures 2017, 12, 102–114, doi: 10.1016/j.istruc.2017.08.004.

    Massah, S.R.; Dorvar, H. Design and Analysis of Eccentrically Braced Steel Frames with Vertical Links Using Shape Memory Alloys. Smart Mater. Struct. 2014, 23, 115015, doi:10.1088/0964-1726/23/11/115015.

    Askariani, S.S.; Garivani, S.; Hajirasouliha, I.; Soleimanian, N. Innovative Self-Centering Systems Using Shape Memory Alloy Bolts and Energy Dissipating Devices. J. Constr. Steel Res. 2022, 190, 107127, doi: https://doi.org/10.1016/j.jcsr.2021.107127.

    Ferraioli, M.; Concilio, A.; Molitierno, C. Seismic Performance of a Reinforced Concrete Building Retrofitted with Self-Centering Shape Memory Alloy Braces. Procedia Struct. Integr. 2023, 44, 974–981, doi: https://doi.org/10.1016/j.prostr.2023.01.126.

    Warn, G.P.; Ryan, K.L. A Review of Seismic Isolation for Buildings: Historical Development and Research Needs. Buildings 2012, 2, 300–325, doi:10.3390/buildings2030300.

    Patil, A.Y.; Patil, R.D. A Review on Seismic Analysis of a Multi-Storied Steel Building Provided with Different Types of Damper and Base Isolation. Asian J. Civ. Eng. 2024, doi:10.1007/s42107-023-00978-7.

    Stiemer, S.F.; Barwig, B.B. Seismic Base Isolation for Steel Structures. Can. J. Civ. Eng. 1985, 12, 73–81, doi:10.1139/l85-008.

    Shmerling, A.; Gerdts, M. Optimization of Inelastic Multistory Structures under Seismic Vibrations Using Shape-Memory-Alloy Material. Sci. Rep. 2022, 12, 16844, doi:10.1038/s41598-022-20537-5.

    Wang, B.; Zhu, S.; Casciati, F. Experimental Study of Novel Self-Centering Seismic Base Isolators Incorporating Superelastic Shape Memory Alloys. J. Struct. Eng. 2020, 146, doi:10.1061/(ASCE)ST.1943-541X.0002679.

    Lan, S.W.; Zhou, D.H. The Research of United Energy Dissipated Design of Buckling Restrained Braces and Viscous Dampers for Frame Structure in High Seismic Region. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 032040, doi:10.1088/1755-1315/153/3/032040.

    1. H. Mehta; S. P. Purohit Proposed SMA Tension Sling Damper for Passive Seismic Control of Building. Electron. J. Struct. Eng. 2019, 19, 49–59, doi:10.56748/ejse.19235.

    De Domenico, D.; Ricciardi, G.; Takewaki, I. Design Strategies of Viscous Dampers for Seismic Protection of Building Structures: A Review. Soil Dyn. Earthq. Eng. 2019, 118, 144–165, doi: 10.1016/j.soildyn.2018.12.024.

    Chang, W.; Araki, Y. Use of Shape-Memory Alloys in Construction: A Critical Review. Proc. Inst. Civ. Eng. - Civ. Eng. 2016, 169, 87–95, doi:10.1680/jcien.15.00010.

    Qian, H.; Li, H.; Song, G.; Guo, W. Recentering Shape Memory Alloy Passive Damper for Structural Vibration Control. Math. Probl. Eng. 2013, 2013, 1–13, doi:10.1155/2013/963530.

    Ozbulut, O.E.; Hurlebaus, S.; Desroches, R. Seismic Response Control Using Shape Memory Alloys: A Review. J. Intell. Mater. Syst. Struct. 2011, 22, 1531–1549, doi:10.1177/1045389X11411220.

    Jia, Y.; Lu, Z.-D.; Li, L.; Wu, Z. A Review of Applications and Research of Shape Memory Alloys in Civil Engineering. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 022009, doi:10.1088/1757-899X/392/2/022009.

    Ma, H.; Yam, M.C.H. Modelling of a Self-Centring Damper and Its Application in Structural Control. J. Constr. Steel Res. 2011, 67, 656–666, doi: 10.1016/j.jcsr.2010.11.014.

    Vasudha, N.; Uma Rao, K. Shape Memory Alloy Properties, Modelling Aspects and Potential Applications - a Review. J. Phys. Conf. Ser. 2020, 1706, 012190, doi:10.1088/1742-6596/1706/1/012190.

    Dolce, M.; Cardone, D.; Marnetto, R. Implementation and Testing of Passive Control Devices Based on Shape Memory Alloys. Earthq. Eng. Struct. Dyn. 2000, 29, 945–968, doi:10.1002/1096-9845(200007)29:7<945: aid-eqe958>3.0.co;2-.

    Liang, F.C.; Chen, H.L.; Wang, Y.Q.; Liu, C.Q.; Qiang, J.H. A Novel Shape Memory Alloy Damper and Its Application in the Vibration Control of Transmission Towers. Appl. Mech. Mater. 2012, 249–250, 542–550, doi: 10.4028/www.scientific.net/AMM.249-250.542.

    Ma, Y.; Chen, H.; Han, Q. Sensitivity Analysis of Factors Affecting down Deflection of Long-Span Continuous Rigid Frame Bridge. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 022048, doi:10.1088/1755-1315/781/2/022048.

    Bai, L.; Zhou, T.H.; Liang, X.W. Study on Restoring Force Models of Steel High Performance Concrete Composite Structural Wall. Key Eng. Mater. 2012, 517, 323–330, doi: 10.4028/www.scientific.net/KEM.517.323.

    Javaherdashti, R.; Nikraz, H. On the Role of Deterioration of Structures in Their Performance; with a Focus on Mining Industry Equipment and Structures. Mater. Corros. 2010, 61, 885–890, doi:10.1002/maco.200905515.

    Walter Yang, C.-S.; DesRoches, R.; Leon, R.T. Design and Analysis of Braced Frames with Shape Memory Alloy and Energy-Absorbing Hybrid Devices. Eng. Struct. 2010, 32, 498–507, doi: 10.1016/j.engstruct.2009.10.011.

    Han, Y.-L.; Xing, D.-J.; Xiao, E.-T.; Li, A. NiTi-Wire Shape Memory Alloy Dampers to Simultaneously Damp Tension, Compression, and Torsion. J. Vib. Control 2005, 11, 1067–1084, doi:10.1177/1077546305055773.

    Clark, P.W.; Aiken, I.D.; Kelly, J.M.; Higashino, M.; Krumme, R. Experimental and Analytical Studies of Shape-Memory Alloy Dampers for Structural Control. In Proceedings of the Smart Structures and Materials 1995: Passive Damping; Johnson, C.D., Ed.; SPIE, 1995; Vol. 2445, pp. 241–251.

    Chen, K.; Tsampras, G.; Lee, K. Structural Connection with Predetermined Discrete Variable Friction Forces. Resilient Cities Struct. 2023, 2, 1–17, doi: 10.1016/j.rcns.2023.02.006.

    Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113, doi: 10.1016/j.matdes.2013.11.084.

    Cladera, A.; Weber, B.; Leinenbach, C.; Czaderski, C.; Shahverdi, M.; Motavalli, M. Iron-Based Shape Memory Alloys for Civil Engineering Structures: An Overview. Constr. Build. Mater. 2014, 63, 281–293, doi: 10.1016/j.conbuildmat.2014.04.032.

    Casciati, S. SMA-Based Devices: Insight across Recent Proposals toward Civil Engineering Applications. Technopress 2019, 24, 111–125, doi:10.12989/sss.2019.24.1.111.

    Guan, H.; Xiao, T.; Luo, W.; Gu, J.; He, R.; Xu, P. Automatic Fault Diagnosis Algorithm for Hot Water Pipes Based on Infrared Thermal Images. Build. Environ. 2022, 218, 109111, doi: 10.1016/j.buildenv.2022.109111.

    May, Z.; Alam, M.K.; Rahman, N.A.A.; Mahmud, M.S.; Nayan, N.A. Denoising of Hydrogen Evolution Acoustic Emission Signal Based on Non-Decimated Stationary Wavelet Transform. Processes 2020, 8, 1460, doi:10.3390/pr8111460.

    Ma, H.; Wilkinson, T.; Cho, C. Feasibility Study on a Self-Centering Beam-to-Column Connection by Using the Superelastic Behavior of SMAs. Smart Mater. Struct. 2007, 16, 1555–1563, doi:10.1088/0964-1726/16/5/008.

    Aval, S.B.B.; Farrokhi, A.; Fallah, A.; Tsouvalas, A. The Seismic Reliability of Two Connected SMRF Structures. Earthquakes Struct. 2017, 13, 151–164, doi:10.12989/eas.2017.13.2.151.

    Fang, C.; Yam, M.C.H.; Lam, A.C.C.; Xie, L. Cyclic Performance of Extended End-Plate Connections Equipped with Shape Memory Alloy Bolts. J. Constr. Steel Res. 2014, 94, 122–136, doi: 10.1016/j.jcsr.2013.11.008.

    Ravi, V.; Krishnan, P.A. Effect of Replacing Steel with Shape Memory Alloy in Shear Wall Systems. Mater. Today Proc. 2019, 11, 1088–1093, doi: 10.1016/j.matpr.2018.12.043.

    Wang, B.; Jiang, H.; Wang, J. Numerical Simulation and Behavior Insights of Steel Columns with SMA Bolts towards Earthquake Resilience. J. Constr. Steel Res. 2019, 161, 285–295, doi: 10.1016/j.jcsr.2019.07.011.

    Ocel, J.; DesRoches, R.; Leon, R.T.; Hess, W.G.; Krumme, R.; Hayes, J.R.; Sweeney, S. Steel Beam-Column Connections Using Shape Memory Alloys. J. Struct. Eng. 2004, 130, 732–740, doi:10.1061/(ASCE)0733-9445(2004)130:5(732).

    Tamai, H.; Miura, K.; Kitagawa, Y.; Fukuta, T. Application of SMA Rod to Exposed-Type Column Base in Smart Structural System. In Proceedings of the SPIE; Liu, S.-C., Ed.; August 19 2003; p. 169.

    Patil, D.M.; Sangle, K.K. Seismic Behaviour of Different Bracing Systems in High Rise 2-D Steel Buildings. Structures 2015, 3, 282–305, doi: https://doi.org/10.1016/j.istruc.2015.06.004.

    Al-Safi, S.; Alameri, I.; Wasel, W.A.; Al-kadasi, A.B. Linear and Nonlinear Behavior of Steel Buildings with Different Bracing Systems. Int. J. Steel Struct. 2021, 21, 475–486, doi:10.1007/s13296-020-00450-1.

    Meena, R.K.; Awadhiya, G.P.; Paswan, A.P.; Jayant, H.K. Effects of Bracing System on Multistoryed Steel Building. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1128, 012017, doi:10.1088/1757-899X/1128/1/012017.

    Gutierrez‐Lopez, A.; Alvarado‐Valle, O.E.; Tolentino, D.; Gaxiola‐Camacho, J.R. Structural Reliability of Steel Buildings with X‐bracing Systems Considering the Performance‐based Seismic Design Philosophy. Appl. Res. 2023, doi:10.1002/appl.202300040.

    Qiu, C.-X.; Zhu, S. Performance-Based Seismic Design of Self-Centering Steel Frames with SMA-Based Braces. Eng. Struct. 2017, 130, 67–82, doi: 10.1016/j.engstruct.2016.09.051.

    Kazemzadeh Azad, S.; Topkaya, C. A Review of Research on Steel Eccentrically Braced Frames. J. Constr. Steel Res. 2017, 128, 53–73, doi: 10.1016/j.jcsr.2016.07.032.

    Tsai, C.S.; Chen, W.-S.; Lin, Y.; Yang, C.-T.; Tsou, C.-P. Seismic Responses of a Full-Scale Steel Structure Using Multi-Curved Buckling Restrained Braces. In Proceedings of the Volume 8: Seismic Engineering; ASMEDC, January 1 2007; pp. 55–61.

    Qian, H.; Li, H.N.; Song, G.; Chen, H.; Ren, W.J.; Zhang, S. Seismic Vibration Control of Civil Structures Using Shape Memory Alloys: A Review. In Proceedings of the Earth and Space 2010; American Society of Civil Engineers: Reston, VA, March 11 2010; pp. 3377–3395.

    Salichs, J.; Hou, Z.; Noori, M. Vibration Suppression of Structures Using Passive Shape Memory Alloy Energy Dissipation Devices. J. Intell. Mater. Syst. Struct. 2001, 12, 671–680, doi:10.1106/RGRQ-VJKM-QWCF-QQDE.

    Wilson, J.C.; Wesolowsky, M.J. Shape Memory Alloys for Seismic Response Modification: A State-of-the-Art Review. Earthq. Spectra 2005, 21, 569–601, doi:10.1193/1.1897384.

    Qiu, C.; Tian, L. Feasibility Analysis of SMA-Based Damping Devices for Use in Seismic Isolation of Low-Rise Frame Buildings. Int. J. Struct. Stab. Dyn. 2018, 18, 1850087, doi:10.1142/S0219455418500876.

    Boroschek, R.L.; Farias, G.; Moroni, O.; Sarrazin, M. Effect of SMA Braces in a Steel Frame Building. J. Earthq. Eng. 2007, 11, 326–342, doi:10.1080/13632460601125763.

    Meshaly, M.E.; Youssef, M.A.; Abou Elfath, H.M. Use of SMA Bars to Enhance the Seismic Performance of SMA Braced RC Frames. Earthquakes Struct. 2014, 6, 267–280, doi:10.12989/eas.2014.6.3.267.

    Han, Y.; Li, Q.S.; Li, A.; Leung, A.Y.T.; Lin, P. Structural Vibration Control by Shape Memory Alloy Damper. Earthq. Eng. Struct. Dyn. 2003, 32, 483–494, doi:10.1002/eqe.243.

    Auricchio, F.; Fugazza, D.; Desroches, R. Earthquake Performance of Steel Frames with Nitinol Braces. J. Earthq. Eng. 2006, 10, 45–66, doi:10.1080/13632460609350628.

    Miller, D.J.; Fahnestock, L.A.; Eatherton, M.R. Development and Experimental Validation of a Nickel–Titanium Shape Memory Alloy Self-Centering Buckling-Restrained Brace. Eng. Struct. 2012, 40, 288–298, doi: https://doi.org/10.1016/j.engstruct.2012.02.037.

    Ozbulut, O.E.; Roschke, P.N.; Lin, P.Y.; Loh, C.H. GA-Based Optimum Design of a Shape Memory Alloy Device for Seismic Response Mitigation. Smart Mater. Struct. 2010, 19, 065004, doi:10.1088/0964-1726/19/6/065004.

    Dolce, M.; Cardone, D. Mechanical Behaviour of Shape Memory Alloys for Seismic Applications 2. Austenite NiTi Wires Subjected to Tension. Int. J. Mech. Sci. 2001, 43, 2657–2677, doi:10.1016/S0020-7403(01)00050-9.

    Dolce, M.; Cardone, D.; Marnetto, R. SMA Recentering Devices for Seismic Isolation of Civil Structures. In Proceedings of the Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways; Liu, S.-C., Ed.; SPIE, 2001; Vol. 4330, pp. 238–249.

    Dolce, M.; Cardone, D.; Marnetto, R.; Mucciarelli, M.; Nigro, D.; Ponzo, F.C.; Santarsiero, G. Experimental Static and Dynamic Response of a Real RC Frame Upgraded with SMA Re-Centering and Dissipating Braces. In Proceedings of the 13th World Conference on Earthquake Engineering; Vancouver, B.C., Canada, 2004.

    Bilham, R. Millions at Risk as Big Cities Grow Apace in Earthquake Zones. Nature 1999, 401, 738–738, doi:10.1038/44445.

    He, C.; Huang, Q.; Bai, X.; Robinson, D.T.; Shi, P.; Dou, Y.; Zhao, B.; Yan, J.; Zhang, Q.; Xu, F.; et al. A Global Analysis of the Relationship Between Urbanization and Fatalities in Earthquake-Prone Areas. Int. J. Disaster Risk Sci. 2021, 12, 805–820, doi:10.1007/s13753-021-00385-z.

    Kelly, J.M. Aseismic Base Isolation: Review and Bibliography. Soil Dyn. Earthq. Eng. 1986, 5, 202–216, doi:10.1016/0267-7261(86)90006-0.

    Julián, C.; Hugo, H.-B.; Astrid, R.-F. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico. Ing. Investig. y Tecnol. 2014, 15, 151–162, doi: https://doi.org/10.1016/S1405-7743(15)30013-5.

    Christopoulos, C.; Zhong, C. Towards Understanding, Estimating and Mitigating Higher-Mode Effects for More Resilient Tall Buildings. Resilient Cities Struct. 2022, 1, 53–64, doi: 10.1016/j.rcns.2022.03.005.

    Ghasemi, M.; Talaeitaba, S.B. On the Effect of Seismic Base Isolation on Seismic Design Requirements of RC Structures. Structures 2020, 28, 2244–2259, doi: 10.1016/j.istruc.2020.09.063.

    Leblouba, M. Selection of Seismic Isolation System Parameters for the Near-Optimal Design of Structures. Sci. Rep. 2022, 12, 14734, doi:10.1038/s41598-022-19114-7.

    Hokmabadi, A.S.; Fatahi, B.; Samali, B. Assessment of Soil–Pile–Structure Interaction Influencing Seismic Response of Mid-Rise Buildings Sitting on Floating Pile Foundations. Comput. Geotech. 2014, 55, 172–186, doi: 10.1016/j.compgeo.2013.08.011.

    Ocak, A.; Nigdeli, S.M.; Bekdaş, G.; Kim, S.; Geem, Z.W. Optimization of Seismic Base Isolation System Using Adaptive Harmony Search Algorithm. Sustainability 2022, 14, doi:10.3390/su14127456.

    CARDONE, D.; DOLCE, M.; PONZO, F.C. THE BEHAVIOUR OF SMA ISOLATION SYSTEMS BASED ON A FULL-SCALE RELEASE TEST. J. Earthq. Eng. 2006, 10, 815–842, doi:10.1080/13632460609350619.

    Chen, X.; Wu, P.; Li, C. Seismic Performance Assessment of Base-Isolated Tall Pier Bridges Using Friction Pendulum Bearings Achieving Resilient Design. Structures 2022, 38, 618–629, doi: 10.1016/j.istruc.2022.02.032.

    Kordestani, H.; Xiang, Y.; Ye, X.; Yun, C.; Shadabfar, M. Localization of Damaged Cable in a Tied‐arch Bridge Using Arias Intensity of Seismic Acceleration Response. Struct. Control Heal. Monit. 2020, 27, doi:10.1002/stc.2491.

    Ponzo, F.C.; Di Cesare, A.; Leccese, G.; Nigro, D. Shake Table Testing on Restoring Capability of Double Concave Friction Pendulum Seismic Isolation Systems. Earthq. Eng. Struct. Dyn. 2017, 46, 2337–2353, doi:10.1002/eqe.2907.

    Corbi, O. Shape Memory Alloys and Their Application in Structural Oscillations Attenuation. Simul. Model. Pract. Theory 2003, 11, 387–402, doi:10.1016/S1569-190X (03)00057-1.

    Xue, S.; Li, X. Control Devices Incorporated with Shape Memory Alloy. Earthq. Eng. Eng. Vib. 2007, 6, 159–169, doi:10.1007/s11803-007-0734-2.

    Hedayati Dezfuli, F.; Shahria Alam, M. Shape Memory Alloy Wire-Based Smart Natural Rubber Bearing. Smart Mater. Struct. 2013, 22, 045013, doi:10.1088/0964-1726/22/4/045013.

    Seo, J.; Hu, J.W. Seismic Response and Performance Evaluation of Self-Centering LRB Isolators Installed on the CBF Building under NF Ground Motions. Sustainability 2016, 8, doi:10.3390/su8020109.

    Casciati, F.; Faravelli, L.; Hamdaoui, K. Performance of a Base Isolator with Shape Memory Alloy Bars. Earthq. Eng. Eng. Vib. 2007, 6, 401–408, doi:10.1007/s11803-007-0787-2.