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Abstract 

This study proposes a practical pricing framework for airport parking infrastructure, with a 

particular focus on aging airports where construction costs have been amortized. Employing a 

benefit-cost analysis approach, the study investigates the case of Mehrabad Airport in Tehran, 

Iran—an operational airport since 1938 with a well-established parking system. Financial data, 

including annual operational costs and revenue figures from parking lot contractors, were obtained 

from airport management to assess current profit margins and determine a fair equilibrium price 

for parking services. The results reveal an average profit margin of approximately 40% for 

contractors, suggesting a pricing imbalance that favors private operators at the expense of both 

customers and the airport authority. Based on these findings, the study recommends a set of policy 

interventions, such as adjusting parking tariffs to reflect real traffic conditions, increasing lease 

rates for contractors, and enforcing service quality regulations. These measures aim to enhance 

transparency, promote equitable pricing, and align stakeholder interests in the airport parking 

sector. The proposed methodology offers a replicable model for pricing public-use infrastructure 

assets at both mature and emerging airports globally. 
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1. Introduction 

The pricing of transportation infrastructure is a critical issue that impacts the efficiency, equity, 

and sustainability of transportation systems. Among the various types of transportation 

infrastructure, parking facilities, particularly at airports, play a vital role as they generate 

significant revenues for airport authorities (Mahpour et al., 2024). With the growing demand for 

air travel, the use of airport parking has also increased (Becken & Carmignani, 2020). However, 

determining the optimal pricing for airport parking depends on several factors, such as demand, 

supply, location, and the quality of parking services (Love et al., 2014). One important question in 

this context is whether the same pricing strategy should be applied to airports that have long been 

established and have a solid market position, compared to those that are newly built or still under 

construction. 

Airport parking projects that are currently under construction or have recently begun operations 

incur various costs, including construction, overhead, and investment expenses (Liu, 2003). 

Several methods can be employed to establish the optimal pricing for these projects. These 

methods include analyzing the supply and demand function, comparing similar infrastructures in 

different countries, and utilizing techniques such as linear regression or benchmarking (Straker, 

2006). However, understanding the supply and demand function and determining the equilibrium 

price can prove to be challenging (Xie et al., 2017). Therefore, a more practical approach is to use 

linear regression to gather relevant data from multiple countries and then apply a transferability 

method to adjust the pricing for airport parking accordingly (Mamdoohi et al., 1393). 

Due to the long lifespan of older transportation infrastructure, costs such as construction expenses 

and interest rates have been amortized. Therefore, it would be unfair to consider only the 

construction costs in evaluating such projects (Jones et al., 2014). Various methodologies can be 

used to determine the pricing of aging airport parking facilities. These include the benchmark 

method employed by established airports, the benefit-to-cost method, and multiple linear 

regression (Fan, 2004; lo Storto, 2017). This paper aims to price the parking services at Mehrabad 

Airport in Tehran, Iran, using the benefit-to-cost method. Mehrabad Airport, which began 

operations in 1938, currently has 6 terminals, 15 active airlines, and 4 parking lots. 

In the next section of the study, we will discuss the review of previous literature on pricing. The 

third section will explain the methods of data collection, data analysis, and the methodology, 

focusing on the benefit-to-cost. The fourth section will present the results of the study, followed 

by a discussion and conclusions in the fifth section. 
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2. Literature review 

Numerous studies have been conducted on parking pricing in various locations. For instance, Mark 

Friesen and colleagues examined dynamic pricing in Europe. They concluded that in order to 

effectively implement dynamic pricing on a larger scale, private parking operators currently using 

a fixed pricing model should follow three essential stages: understanding, evaluation, and 

communication (Friesen & Mingardo, 2020). Moreover, researchers examined data from 14 

garages participating in the SF-park program in San Francisco. They found that by implementing 

price management for parking, public usage of the garages could increase by over a third. 

Additionally, this approach helped reduce the average costs for drivers while maintaining a stable 

revenue stream for the city (Pierce et al., 2015). 

Hao Wang and colleagues conducted a study analyzing field data collected over four time periods, 

both before and after the implementation of a new parking pricing policy in Nanning. Their 

findings indicate that as parking prices increase, the duration of parking time decreases. This 

relationship demonstrates an elasticity effect, which suggests that the responsiveness of parking 

circulation may fluctuate based on the influence of vehicle ownership (Wang et al., 2020). The 

pricing of parking lots has a significant effect on the amount of demand and the quality of services, 

and more studies have been conducted in this field (Mo et al., 2021; Nourinejad & Roorda, 2017; 

Ottosson et al., 2013; Pierce & Shoup, 2013; Shu et al., 2021). 

Various studies focused on airport parking pricing. For instance, Andreas Papayiannis introduced 

innovative methodologies to develop recommended pricing structures based on parking capacity 

and the time remaining until departure. Within the field of airport parking sales, three main revenue 

management methods have been analyzed: Stochastic Multi-Resource (SMR), Stochastic Single-

Resource (SSR), and Deterministic Single-Resource (DSR). These methods aim to assess the 

expected marginal values of parking spaces, which can then be used to regulate bid prices in an 

ongoing experimental framework (Papayiannis et al., 2019). 

Litman conducted an investigation into determining the most effective pricing for various types of 

parking services, taking into account several factors that influence the final cost (Litman, 2018). 

This study recommends that parking services should be priced based on the costs associated with 

land acquisition or rental, construction, maintenance, and operations. This includes the expenses 

for utilities such as water, electricity, and gas. Additionally, another study examines how the 

maximum daily fee charging strategy has impacted the quality of parking services at Hongqiao 

International Airport, using automated transaction data from before and after the strategy was 

implemented (Cheng & Qi, 2019). The estimation results indicate that the new pricing method will 

significantly decrease the demand for long-term parking and enhance the availability of airport 

parking facilities, particularly during extended vacations. As a result, both throughput and revenue 

at the airport have seen substantial increases, though there are additional time costs associated with 
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vehicles departing. Furthermore, the price elasticity for parkers with varying parking durations 

was estimated. The findings revealed that price sensitivity is relatively inelastic but varies 

depending on the parking duration. 

In the absence of a comprehensive pricing method for airport parking, it is imperative to consider 

a multitude of additional factors. These may encompass the supply and demand dynamics of 

transportation at the airport, as well as various socioeconomic factors (A Mahpour, A Baghestani, 

2024)(Keefe, 2014). Research has indicated that the characteristics of airports and air 

transportation, as well as the socioeconomic attributes of countries and cities, could exert an 

influence on the pricing and revenue of services (Iyer & Jain, 2019; Zuidberg, 2017). 

A significant amount of research has focused on airport parking pricing; however, it is uncommon 

to find studies that exclude depreciated costs or reference outdated airports in their pricing analysis, 

particularly when using the benefit-to-cost method. Therefore, this issue represents a research gap 

that deserves more attention in order to establish fair pricing practices. 

3. Methodology  

In this section, the method of data collection is described and the collected information is 

described. In addition, the method used in the study is explained. 

3.1. Data 

The data on the parking information for terminals 1, 2, 4, and 6 of Mehrabad Airport were obtained 

with the cooperation of the airport management. The parking lots of the airport are rented annually 

to two contractors. The data were collected in two sections. The first section includes the annual 

costs of the contractor, such as annual rent, number of staff, general expenses, salaries of 

employees, insurance costs, maintenance costs, and equipment costs. The second section includes 

the income information of the contractor, such as the number of vehicles exiting with less than 24 

hours of parking and more than 24 hours of parking, the entrance fee, the parking fee per day or 

hour, the average parking time of less than 24 hours and the average parking time of more than 24 

hours.  

3.2. Benefit-to-Cost 

In this study, a benefit-cost model was utilized to evaluate the current profitability of Mehrabad 

airport's parking lots and to project future pricing for these lots. Initially, we calculated the current 

costs and annual rent associated with the parking areas. Following this, we determined the annual 

revenue generated from the parking lots. This allowed us to establish the current annual profit. 

Subsequently, we estimated the equilibrium price in relation to costs. The annual profit was 

calculated using equation 1, while the annual profit rate was derived from equation 2: 
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Annual Profit = Annual Income - Annual Cost (1 

Annual profit rate = (Annual Profit / Annual Cost) * 100 (2 

 

4. Results 

The costs associated with Mehrabad Airport are detailed in Table 1. The total number of parking 

staff across all shifts is 99 individuals and the average monthly salary of each staff member is 65 

million IRR. Also, the majority of the contractor's expenses for one year are attributed to the annual 

rent for the parking lots, which amounts to 21,000 million IRR1, along with the salary of all staff 

members totaling 77,220 million IRR, and insurance costs totaling 18,000 million IRR.  

Additionally, the general expenses amount to 500 million IRR per month. The monthly costs for 

building maintenance are 300 million IRR, while the monthly expenses for equipment maintenance 

and repair are 200 million IRR. Therefore, the total annual expenditure for general expenses, 

building maintenance costs, and equipment maintenance costs is 12,000 million IRR. In total, the 

annual expenses for the parking lots at Mehrabad Airport, which include maintenance, equipment 

costs, and general expenses such as water, electricity, and gas, reach 317,220 million IRR. 

Table 1. Mehrabad airport parking cost 

Detail 
Amount 

(Million IRR) 

Month/ Year/ 

Person 

Total Cost 

(Million IRR) 

Terminal 4 and 6 parking lot rental (total 

capacity: 1700) 

70,000 1 year 70,000 

Terminal 1 and 2 parking lot rental (total 

capacity: 3220) 

140,000 1 year 140,000 

Monthly general expenses (water, electricity, 

gas, telephone, etc.) 

500 12 Month 6,000 

Monthly insurance 1,500 12 Month 18,000 

Monthly building maintenance 300 12 Month 3,600 

Monthly equipment maintenance 200 12 Month 2,400 

Average monthly salary of each staff member 65 12 Month * 99 

Person 

77,220 

Total cost (Per 1 year)   317,220  

 

The income characteristics of contractors are outlined in Table 2. Parking for drivers is available 

in two formats: daily stops (lasting more than 24 hours) and hourly stops (lasting less than 24 

hours). The parking lot experiences a departure of 3,500 cars for hourly stops, while 1,500 cars 

leave for daily stops. The average stopping time for hourly stops is 4 hours, whereas daily stops 

 
1 500,000 IRR is equal to 1 Dollars in Jan 2024 
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average 2 days. Consequently, the revenue generated from hourly parking amounts to 76,650 

million IRR, while the revenue from daily parking totals 558,450 million IRR. Overall, the total 

revenue from Mehrabad Airport parking is 635,100 million IRR. 

 

Table 2. Mehrabad airport parking income 

Parking Departure Average stop Income price 
Hourly or daily 

price 

Amount 

(Million IRR) 

Hourly stops 3500 4 hours 20,000 IRR 10,000 IRR 76,650 

Daily stops 1500  2 days 20,000 IRR 500,000 IRR 558,450 

Total income    635,100 

Adjusted Total Income (Correction factor = 0.7)  444,570 

 

Given that the full parking capacity may not be available throughout the year due to factors such 

as maintenance or seasonal fluctuations in demand, this study applies a correction factor of 0.7 to 

the annual revenue. Consequently, the total corrected annual revenue amounts to 44,570 million 

IRR. The results show that in order for the amount of income and cost to be equal, drivers must 

pay 24,142 IRR for each hour of parking, which is equal to the equilibrium price. Considering the 

cost and income obtained, the amount of profit calculated for the contractor is 127,350 million 

IRR per year, and the annual profit rate is 40.15%. 

5. Policy and Conclusion 

This paper addresses the issue of pricing for outdated transportation infrastructure, arguing that it 

is unfair to factor in construction costs that have already been amortized. It proposes a benefit-cost 

model for pricing the parking lot at Mehrabad Airport in Tehran, which is an older airport, 

explicitly excluding construction costs from the calculations.  This paper gathers annual cost and 

income data from the contractors who lease the parking lot from the airport management and 

analyzes the profitability of the parking business. The findings indicate that the contractors 

generate a net profit of 40.15% from the airport parking operations. 

This paper offers policy recommendations for airport sector managers based on the findings of a 

benefit-cost analysis of parking lot pricing. It suggests that airport service department managers 

should closely monitor and regulate both the quality of parking services and the profit margins of 

contractors who operate the parking lots. Addressing these issues can enhance customer 

satisfaction and loyalty, as well as increase demand for parking services (Nourinejad & Roorda, 

2017)(Qin et al., 2022).  

Additionally, the paper recommends that parking lot pricing be adjusted to reflect the traffic 

conditions surrounding the airport, contributing to an overall improvement in traffic flow (Jakob 
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& Menendez, 2020). Furthermore, it suggests increasing the annual fees and rent for contractors 

to ensure a fair and reasonable profit margin while preventing excessive profiteering in the parking 

business. In conclusion, these policies can enhance the management and performance of the airport 

parking sector, aligning them with the interests and expectations of stakeholders. 
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Abstract 

Riverbank filtration systems offer a useful and reliable method for meeting domestic and 

industrial demands. In these systems, some wells are constructed in the bank of a river, where 

the water that flows across porous media into them has a very low pollutant level compared 

to the river. This study develops a cost-effective optimization model with the objective of 

minimizing total cost. A simulation model for analyzing these systems is developed as well. 

In these models, the analytic solutions of the groundwater flow equations and pollutant 

transport are used. Using the concept of response functions of linear systems, these solutions 

are generalized in the case of variable pumping. In common RBF systems, the unit pulse 

response function of drawdown is independent of wells location, and the transient flow 

equation reaches pseudo steady-state conditions. Two hypothetical example problems are 

presented, in the first, the design of a system is considered for meeting a given demand. The 

model solutions give the distance of wells’ alignment from river, distance between wells, and 

wells’ pumping rates. The model also outputs the pollutant concentration in the wells. The 

results of the steady optimization problem reveal that unexpectedly the central well’s 

discharge is greater than the side wells’ discharges. The resulting pumping, conveyance, and 

treatment costs showed that all these three cost terms are important. The sensitivity analysis 

revealed that all four considered parameters are sensitive with the sensitivity ranking of: T 

(transmissivity), λ (decay rate), ϴ (porosity), and Rd (retardation factor). In the second 

problem, an existing RBF system was analyzed by a simulation model and the variations of 

the well’s concentration were assessed by altering the four sensitive parameters. The 

proposed models are useful tools for primary design and analysis of RBF systems and 

assessing the effects of changing parameters in the system behavior. 
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1. Introduction 

Rivers are one of the most important sources of domestic water supplies. Entry of different 

pollutants such as agricultural, industrial and urban wastewaters into the rivers dramatically 

compromises their quality. Typically, a great deal of budget is spent for the treatment of river 

water withdrawals in water treatment plants. 

Riverbank filtration (RBF) is one of the efficient methods for pretreatment of river water 

pollutions. RBF systems are widely used for drinking water providing and treatment in 

several cities around the world especially in the Europe countries, where they provide a cost-

effective and sustainable alternative compare to direct surface water intake and treatment. As 

illustrated in Fig. 1, in this method, some wells are constructed adjacent to a permanent river, 

which together have the capacity to meet a given demand. During transport and seepage of 

water from river to wells through porous media of riverbanks, a considerable level of 

pollutants can be removed. Although this method is largely classified as physical treatment, 

in most cases, it removes or reduces most chemical and biological pollutants. 

 

Figure 1: Schematic of an RBF system  

Another important feature of RBF systems is its usage in accidents through which dangerous 

pollutants such as chemical tanks enter into the river. These events have less intense effects 

on the performance of RBF systems because of relatively long delay for river water reaching 

wells.  

In conventional RBF systems, vertical wells are usually constructed in a straight line parallel 

to the river line; however, in some situations, use of horizontal (collector) wells increases the 

discharge rate to wells (Ray et al., 2003). 

Most RBF systems are constructed in alluvial sandy aquifers (banks). In addition to 

enhancing water quality, reduction of water temperature and protection of fish and other 

aquatic creatures are other advantages of RBF systems. The major elements of an RBF 

system that must be considered include the number of production wells and their capacities 
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(discharges), distance between the river course and wells’ alignment, and distance between 

wells. 

When the desired quantity (discharge) and quality (concentration) are given, the system could 

be designed with a minimum cost (cost-effective design). As demonstrated in Fig. 2, the 

system costs include costs of constructing wells and OMR, costs of construction of pipelines 

and OMR, pumping cost of wells, and water treatment cost. 

 

Figure 2: Component of an RBF system  

2. Literature review 

It seems that the Glasgow Water Supply Company was the first known firm that developed 

and used a RBF system in 1810 (Ray et al., 1999). Moser et al. (1990) studied on an aquifer 

that used two adjacent rivers for a RBF system. Using an advection-dispersion based model, 

they computed the transfer time from the river to the aquifer, and they concluded that by 

knowing this delay time, there is enough time to control and prevent river pollution of the 

pumping wells. 

Doussan et al. (1997) assessed the general characteristics of RBF systems in a portion of 

Seine River in France. They simulated the oxidation and reduction reactions as well as 

nitrogen transfer reaction, using a numerical model. They reported the importance of the rate 

of water (discharge), sediment and organic carbon in the quality of transferred water.  

Dillon et al. (2001) studied on the potential of the RBF for domestic water supply, 

considering the removal of microcystins in Murray River in Australia. They briefly reported 

on the decomposition of cyan bacterial hepatotoxin microcystins in porous media. 

In RBF systems, removing organic pollutions is an important task when water is used for 

domestic purposes. Absorption and colonization of an organic pollutant could reduce its 

transfer. Kim et al. (2002) used a kinetic model for simulation of fate and transport of 

dissolved organic pollutants and bacteria. They modeled the porous media using four phases: 

two colloidal phases, one aquatic phase and a solid phase. The result of this study shows that 

transfer of pollutants in vicinity of dissolved organic matter is considerably high.  
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Schon (2006) studied the RBF systems in Austria and India. He concluded that layout and 

arrangement of pumping wells based on morphology have considerable effect on the 

extension of treatment area in wells located on the inside of a meander, and the filtration from 

riverbank has more sensitivity than wells located outside the meander.  

Abdel Fattah et al. (2007) used tracer techniques to trace and evaluate transfer of water 

through alluvial aquifer in Elpaso, Texas. They conducted several simulations to show the 

effects of well’s locations and its pumping rate on the flow path, travel time, pumping radius 

of influence, and ratio of the volume of water from river to the volume of water from aquifer. 

Also, they found that pumping rate has more influence on travel time than distance between 

well and river.  

Shamrukh et al. (2008) investigated the effectiveness of RBF system in Upper Egypt in Nile 

valley for removing particulates, dissolved solids, and microbial pathogens to produce 

drinking water, for this purpose they monitored physical, chemical and microbial 

measurements. They compared water produced with surface and background natural 

groundwater and with RBF system and proved the effectiveness of RBF technique for potable 

water supply requiring any further treatment or as pre-treatment for higher water quality in 

Upper Egypt. 

Sandhu  et al. (2011) studied on using the operating bank filtration sites in India and 

investigated potentials of RBF sites based on water problems and hydrogeological suitability. 

They resulted bank filtrate shown higher quality in RBF water in compared to water from 

surface or groundwater sources. They investigated the different using and the consequent 

effect on the quality and quantity of surface and groundwater. They stated the RBF system 

with an emphasis on the hydrogeological conditions, system capacities and the main water 

quality improvements. However, they resulted there are some prospects and limitations for 

the application of bank filtration in India at the existing sites. 

Lee et al. (2011) studied on using a radial collector well for taking out a large amount of 

groundwater in way that haven’t seen a deep drawdown at the well’s center. They 

investigated hydraulic interaction between river water and groundwater flow response to 

pumping the riverbank filtration system in Daesan Myeon, Korea. They performed steady-

state and transient simulations to estimate the well yield and well responses to pumping. They 

also evaluated the effect of well structure on the capacity of RBF well. They resulted 

increasing the length of horizontal arms increases the amount of induced river water and with 

increasing pumping rates the effect of well design is more noticeable. 

Prasad et al. (2016) presented an optimization model using genetic algorithms for optimal 

well distance from the river with minimizing the cost of pumping and treatment. The total 

suspended solids, endosulfan concentrations, and E. coli were considered as water quality 

parameters. The total suspended used as microbial contamination and considered not to be 

absorbed in the aquifer, and endosulfan considered undergoing sorption. Also, Sensitivity 

analysis has been done and resulted the optimal distance significantly affected at lower 

hydraulic conductivity values and the cost of treatment with increasing in hydraulic 

conductivity decreased. It was concluded that hydraulic conductivity of the adjoining aquifer 
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plays a dominant role in deciding the optimal distance of pumping wells in a river bank 

filtration system.  

Mustafa et al. (2024) introduces a 3D analytical model utilizing the Green's function 

approach to analyze the movement of contaminants from the river towards the extraction well 

within RBF systems. By accounting for the dynamic interaction between river width and the 

clogging layer, this model offers a more accurate depiction of contaminant transport in three-

dimensional water flow scenarios. 

Uwimpaye et al. (2025) assessed the suitability of RBF in regions with limited access to clean 

water, such as Africa, where it has the potential to alleviate water scarcity and enhance water 

security. This study used various studies, highlighting the principles, applications, and 

advancements of RBF worldwide. The findings of this research revealed that RBF effectively 

addresses a broad range of contaminants, including microbial pathogens, organic compounds, 

heavy metals, and micro-pollutants, through natural processes like adsorption, 

biodegradation, and filtration. 

As presented in the literature review, little attention has been paid to using mathematical 

(optimization) models in designing and analyzing RBF systems. This study undertook this 

task. Importantly, attempts were made not to give details of chemical, physical, and 

biological behavior of pollutants; instead, the governing equations of groundwater flow and 

contaminant fate and transport were developed here. 

Typically, RBF system’s extended area is small as compared to the total extension of aquifer. 

Thus, the aquifer was assumed homogeneous, and hence use of lumped models and analytical 

solution is reasonable. In the case of inhomogeneous aquifers, the methodology may extend 

to using numerical methods and distributed models, though the solution of the resulting 

model is more complicated usually requiring utilization of a simulation-optimization scheme 

to achieve the desired results. 

In addition to aquifer homogeneity, other major assumptions in this study included the 

following: the river discharge is permanent; river and wells are fully penetrated; the river and 

adjacent aquifer are hydraulically connected and there is no low permeable layer on the bed 

of river; groundwater flow in porous media is Darcian and Dupoit assumption is applicable; 

drawdowns in comparison with the initial saturated layer is small; and the system design life 

cycle and interest rate are given. The river pollutant is a single species and Fickian, and not in 

the form of biological species (microorganisms) or NAPL. Hence, the advection-dispersion 

solute transport equation governs here; the flow and solute transport from the river to aquifer 

is considered one-dimensional and the linear sorption mechanism has been considered along 

with the equilibrium chemical reaction. Finally, assuming that the changes in the solute 

concentration yielded by the solution of the transport equation cause negligible variations in 

water density, thus the flow equation and solute transport equation can be solved 

independently (Zheng and Bennet, 2002). 
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3. Methodology 

3.1. Model Formulation: Steady – State Conditions 

3.1.1. Flow Equations 

The flow equations of an RBF system in steady-state conditions are derived by combining 

continuity equation, Darcy’s law, and image wells concept. Under steady-state conditions, the 

total water pumped in wells comes from the river. As demonstrated in Fig. 3, the drawdown 

at distance r from well pumping equals (McWhorter and Sunada, 1977): 

𝑠 =
𝑄𝑤
2𝜋𝑇

𝐿𝑛
𝑟𝑖
𝑟

 (1 

Where, Qw is constant pumping rate from the well, T represents the aquifer transmissivity, r 

shows the distance from the river and ri shows the distance from the image well. Also, 

drawdown in the pumping well is derived by incorporating r=rw in Eq. (1). 

Fig. 4 indicates a schematic arrangement of the wells near a permanent river as an RBF 

system. Using Eq. (1) and assuming that the aquifer behaves as a linear system, the required 

equation could be derived. The drawdown in each well of the system s(k) equals the sum of 

drawdowns due to individual well pumping. Thus, with 𝑁𝑤wells, the drawdown s(k) in well 

k, equals: 

 

Figure 3: Section view of system with major components  

𝑠(𝑘) =∑𝑠𝑘𝑗

𝑁𝑤

𝑗=1

 (2 
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Figure 4: A schematic arrangement of wells near a permanent river 

Where, s(k,j) is the portion of drawdown in well k due to pumping in well j (j may equal k). 

From Eq. (1), we have: 

𝑠(𝑘, 𝑗) =
𝑄(𝑗)

2𝜋𝑇
𝐿𝑛(

√4𝑥2 + 𝑙𝑘𝑗
2

𝑙𝑘𝑗
) 

(3 

Where, Qw(j) is the constant pumping rate in well j, lkj represents the distance between wells k 

and j (for k=j, lkj=rw, where rw is the well radius), and x denotes the distance between the 

river and wells’ alignment (see Fig. 7). 

3.1.2. Solute Transport Equations 

The governing equation of the solute transport in porous media with sorption and decay was 

derived by combining continuity equation; Fick’s first and second law, and sorption plus 

decay mechanism. The resulting equation was a variant of advection-dispersion equation. 

Assuming linear sorption isotherm and one-dimensional unidirectional flow in homogeneous 

isotropic porous media and first-order irreversible rate reaction (decay rate), we have (Zheng 

and Bennet, 2002): 

𝑅𝑑
𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
− 𝑉𝑥

𝜕𝐶

𝜕𝑥
− 𝜆𝐶 (4 

Where, Rd represents the retardation factor, C is the solute concentration, t shows the time, 

Dx is dispersion coefficient, Vx denotes seepage velocity in x direction, and λ is the decay 

rate. From Darcy’s law, we have: 

𝑉𝑥 =
𝑞𝑥
𝜃
=
𝐾𝑥
𝜃
𝑖 =

𝐾𝑥
𝜃

�̄�

𝑥
 

(5 

Where, qx is Darcy velocity or groundwater flux in x direction, Kx shows the hydraulic 

conductivity in x direction, �̄� = 1/𝑁𝑤 × ∑ 𝑠𝑘
𝑁𝑤
𝑘=1 is the average drawdown of wells, and x is 

the well’s distance to the river. The Retardation factor, Rd, is a function of distribution 

coefficient (Kd) along with the porosity of aquifer (ϴ) and bulk density of the aquifer material 

(ρb), as (Zheng and Bennet, 2002): 
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𝑅𝑑 = 1 + 𝐾𝑑
𝜌𝑏
𝜃

 (6 

The dispersion coefficient Dx is also a function of longitudinal dispersivity (αL), groundwater 

velocity (Vx), and molecular diffusivity (D*) as: 

𝐷𝑥 = 𝛼𝐿 × 𝑉𝑥 + 𝐷∗ ≈ 𝛼𝐿 × 𝑉𝑥 (7 

The longitudinal dispersivity, αL, is a very uncertain parameter (Gelhar, 1993). However, a 

well-known equation proposed by Neuman (1990) is applied in the case of data inadequacy 

as a rough estimate:  

𝛼𝐿 = 0.0175  𝐿
1.46,                    100  𝑚 < 𝐿 < 3500  𝑚 (8-a 

𝛼𝐿 = 0.0169 𝐿1.53,                                  L < 100  𝑚 (8-b 

In which, L is the distance between the contaminant source (river in this case) and 

contaminant exposure (well in this case). As RBF systems are constructed next to the rivers, 

thus, the Eq. (8-b) is applicable to these systems. Using proper initial and boundary 

conditions, the analytic solution could be conducted. The initial and boundary conditions in 

this case are: 

𝐶(𝑥, 0) = 0                        x ≥ 0     initial condition (9 

𝐶(0, 𝑡) = 𝐶0                     t ≥ 0      boundary condition (10 

𝐶(∞, 𝑡) = 0                      t ≥ 0     boundary condition (11 

𝜕𝐶(∞,𝑡)

𝜕𝑥
= 0                         t ≥ 0    boundary condition (12 

Where, C0 is the constant concentration of pollution in the river (mg/lit) and C(x,t) represents 

the (reduced) concentration of leaked water in riverbank at distance x after time t. The 

analytical solution for this problem has been given by Batu as (Batu, 2006): 

𝐶(𝑥, 𝑡) =
𝐶0
2

[
 
 
 
 𝑒𝑟𝑓𝑐 [

𝑅𝑑𝑥 − (𝑉𝑥
2 + 4𝐷𝑥𝑅𝑑𝜆)𝑡

2(𝐷𝑥𝑅𝑑𝑡)0.5
] × 𝑒𝑥𝑝(

(𝑉𝑥 − (𝑉𝑥
2 + 4𝐷𝑥𝑅𝑑𝜆))𝑥

2𝐷𝑥
) +

𝑒𝑟𝑓𝑐 [
𝑅𝑑𝑥 + (𝑉𝑥

2 + 4𝐷𝑥𝑅𝑑𝜆)𝑡

2(𝐷𝑥𝑅𝑑𝑡)0.5
] × 𝑒𝑥𝑝(

(𝑉𝑥 + (𝑉𝑥
2 + 4𝐷𝑥𝑅𝑑𝜆))𝑥

2𝐷𝑥
)

]
 
 
 
 

 (13 

Under steady-state conditions (t→∞), the above equation is reduced to: 

𝐶(𝑥) = 𝐶0 × 𝑒𝑥𝑝 [
𝑥(𝑉𝑥 − (𝑉𝑥

2 + 4𝐷𝑥𝑅𝑑𝜆))

2𝐷𝑥
] (14 

In which, C(x) is the well water concentration at the distance x from the river (mg/lit). 
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3.2. Optimization Model 

Assuming that the river discharge and its pollution concentration as well as wells’ pumping 

rates and the resulting drawdowns are all constant, the steady-state optimization model can be 

developed. As displayed in Fig. 5, let C0 be the constant concentration of pollution, x the 

wells’ distance to river, lkj the distance between wells k and j, Qw(k) the discharge of well k 

and Q the required demand (Q=Dem). Then, the objective function of this cost-effective 

problem is: 

𝑀𝑖𝑛  𝑍 = 𝐶𝐼𝑛𝑠𝑡
𝑤 + 𝐶𝑃𝑢𝑚𝑝

𝑤 + 𝐶𝐼𝑛𝑠𝑡
𝑝 + 𝐶𝑐𝑜𝑛𝑣

𝑝 + 𝐶𝑡𝑟𝑒𝑎𝑡 (15 

Where, 𝐶𝑖𝑛𝑠𝑡
𝑤  is the cost of installing wells (such as construction of wells, casing, pumps 

purchased, installation, etc.), 𝐶𝑝𝑢𝑚𝑝
𝑤

 
represents the pumping cost of the well which is a 

function of well’s discharge (Qw(k)) and well’s total lift height (hk),𝐶𝑖𝑛𝑠𝑡
𝑝

 denotes the 

installation costs of pipelines (construction, purchasing, installation, etc.), 𝐶𝑐𝑜𝑛𝑣
𝑝

 is the cost of 

pipeline’s water conveyance which is a function of well’s discharge and distance, and finally 

𝐶𝑡𝑟𝑒𝑎𝑡 shows the cost of treatment of water due to residual concentration (pollution) 

remaining in the well water. Then, 𝐶𝑖𝑛𝑠𝑡
𝑤  and 𝐶𝑖𝑛𝑠𝑡

𝑝
 represent the operation and maintenance 

cost since this cost is usually considered as a fraction of the initial capital cost. All costs are 

considered in equivalent annual form. 𝐶𝑝𝑢𝑚𝑝
𝑤  equals to: 

𝐶𝑝𝑢𝑚𝑝
𝑤 =∑𝐶𝑝𝑢𝑚𝑝

𝑤

𝑁𝑤

𝑘=1

(𝑘) (16 

Where, Nw represents the total number of wells and 𝐶𝑝𝑢𝑚𝑝
𝑤 (𝑘) is the annual pumping cost of 

well k, which is equal to: 

𝐶𝑝𝑢𝑚𝑝
𝑤 (𝑘) = 𝐻𝑜𝑢𝑟(𝑘) × 𝑈𝐶𝐸 × 𝑃𝑤(𝑘) (17 

Where, UCE is the unit cost of energy ($/kWh) and Pw(k) is the power utilized for the pump in 

well k. Hour(k) denotes the hours that pump k works in a year. Also, 

𝑝𝑤(𝑘) = 𝛾 × 𝑄𝑤(𝑘) × (ℎ
𝑖𝑛𝑖(𝑘) + 𝑠(𝑘))/𝜀 (18 

Where, γ is the specific weight of water (9806 N/m3), hini(k) is the initial lift (distance 

between ground surface and groundwater table before pumping) of well k, s(k) represents the 

drawdown in well k in response to pumping of all wells (Eq. (2)), and ɛ is the pump’s overall 

efficiency.  

The conveyance cost equals to: 

𝐶𝑐𝑜𝑛𝑣
𝑝 = 𝑈𝐶𝐸 ×∑𝑄𝑤

𝑁𝑤

𝑘=1

(𝑘) × (𝛥𝐻 + 𝐻𝑙) × 𝐻𝑜𝑢𝑟(𝑘) (19 

Where, ∆H is the elevation difference between the collector pipe and pumping house (Fig. 2) 

and Hl represents the total head loss (friction and local head losses) in pipes. Based on Darcy-
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Weisbach equation, the friction head loss (Hfrc) is a function of the pipe’s length, diameter 

and discharge. Similarly, the local head loss (Hloc) is a function of the pipe’s diameter and 

discharge (Chin, 2012). Thus: 

𝐻𝑙 = ∑ 𝐻𝑘𝑗
𝑓𝑟𝑐

𝑁𝑤−1

𝑘=1

+ 𝐻𝑐𝑜𝑙𝑙
𝑓𝑟𝑐

+ 𝐻𝑐𝑜𝑙𝑙
𝑙𝑜𝑐 ;    j = 𝑘 + 1 (20 

𝐻𝑓𝑟𝑐 = 𝑓
16𝑙𝑄2

𝜋2𝐷4
 (21 

𝑓 =
0.25

[[𝑙𝑜𝑔(
𝑘𝑠

3.7𝐷
] +

5.74

𝑅𝑒0.9
)]
2       (for   10

-6 ≤
𝑘𝑠
𝐷
≤ 10−2,    5000 ≤ Re ≤ 108) 

(22 

Re=VD/υ=4Q/(πDυ)=1273240Q/D (23 

𝐻𝑐𝑜𝑙𝑙
𝑙𝑜𝑐 = 𝐾

16𝑙𝑐𝑜𝑙𝑙𝑄𝑐𝑜𝑙𝑙
2

𝜋2𝐷𝑐𝑜𝑙𝑙
4  (24 

Where, f is the pipe friction factor, ks shows the pipe roughness, l is the pipe length, Q 

denotes the pipe discharge, D indicates the pipe diameter, and Re is the Reynolds number. 

Equations 21-23 must be written for each pipe (using lkj, Qkj , Dkj , fkj, and Rekj for each pipe 

k-j located between wells k and j, as well as using lcoll, Qcoll , Dcoll , fcoll, and Recoll for the 

collector pipe).  

Also, V is the pipe water velocity and υ shows the kinematic viscosity of water (equals 10-5 

m2/s at 20oC). Note that 𝑄𝑐𝑜𝑙𝑙 = ∑𝑄𝑤(𝑘) =𝐷𝑒𝑚 and Qkj is related to the pipe k-j position in 

the system. For example, in the 5-well configuration of Fig. 7, by considering that the 

collector pipe is located back of the well 3, we have Q12=Qw(1), Q23=Qw(1)+Qw(2), 

Q34=Qw(4)+Qw(5), and Q45=Qw(5). Thus,  

𝑄𝑘𝑗
(𝑗=𝑘+1)

=

{
 
 
 
 

 
 
 
 

𝑄𝑤(1),                                                   𝑓𝑜𝑟𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡𝑝𝑖𝑝𝑒

∑ 𝑄𝑤(𝑘)

[
𝑁𝑤−1

2
]

𝑘=1

, 𝑓𝑜𝑟𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑖𝑝𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑤𝑒𝑙𝑙1 𝑎𝑛𝑑 𝑤𝑒𝑙𝑙 [(𝑁𝑤 − 1)/2]; 

∑ 𝑄𝑤(𝑘)

𝑁𝑤

𝑘=[(𝑁𝑤+1)/2]

, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑖𝑝𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑤𝑒𝑙𝑙 [
𝑁𝑤 + 1

2
] 𝑎𝑛𝑑 𝑤𝑒𝑙𝑙 𝑁𝑤; 

𝑄𝑤(𝑁𝑤),                                                    𝑓𝑜𝑟𝑡ℎ𝑒 𝑙𝑎𝑠𝑡𝑝𝑖𝑝𝑒

 

(25 

Where, [u] is the integer value of u.  

Obviously, the water treatment cost increases by the elevating the water volume (Dem) and 

solute concentration (C), as more chemicals are needed to reduce the concentration up to the 
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standard levels. Thus, this term is a function of the remaining concentration C(x) (as depicted 

in Eq. (13)) and volume of water that would be treated. 

𝐶𝑡𝑟𝑒𝑎𝑡 = 𝑓1(𝐶(𝑥), 𝐷𝑒𝑚) (26 

The main attractive feature of RBF systems is the property of removing large amounts of 

pollutants in flowing river water. Indeed, most of river water pollutants which enter the 

aquifer and then wells can be removed through porous media. However, some pollutants 

remain in the wells from which removing these residual pollutants is necessary to achieve 

standard levels.  

There are various treatment methods for removing residual pollutants in water, and here the 

disinfection with Chlorine and Chloramine (Wilbert et al. 1999) has been used as a common 

method of treatment. Cost estimation for Chlorine and/or Chloramine disinfection is based on 

the amount of chemicals used per day. Chlorine demand is determined from the concentration 

of nitrite and reduced inorganic transition metals, including chromium, copper, iron, and 

manganese present in the water (Wilbert et al. 1999). The detailed relations of disinfection by 

chlorine and ammonia have been given by Wilbert et al. (1999), and its companion, 

Microsoft Excel file (WaTER). The treatment cost with this method is a multivariate 

function:  

𝐶𝑡𝑟𝑒𝑎𝑡 = 𝑓2(𝐷, 𝐶(𝑥), 𝐷𝐶𝑅, 𝐴𝐴𝐷, 𝐶𝑙2𝐶𝑜𝑠𝑡, 𝐴𝑚𝑚𝐶𝑜𝑠𝑡) (27 

Where, Q is the production flow rate to be treated (Q=Dem), C(x) represents the pollutant 

concentration in water, DCR denotes the desired chlorine residual, AAD is alternative 

ammonia dose, Cl2Cost shows the cost of Cl2 and AmmCost indicates the cost of NH4OH. 

The product flow rate (Q) and porous media characteristic (ϴ, S, T) are known, but the 

pollution concentration in the well water is unknown. The farther the distance to the river, the 

more the natural the treatment in porous media will be, thus reducing treatment costs. Also, 

more drawdown in wells increases the pumping cost. Thus, there is an optimum distance 

which minimizes the total cost of treatment and pumping. 

Finally, the required demand (Dem) must be met. Thus,  

∑𝑄𝑤

𝑁𝑤

𝑘=1

(𝑘) = 𝐷𝑒𝑚 (28 

For a given demand (Q=Dem) and number of wells (Nw), 𝐶𝐼𝑛𝑠𝑡
𝑤 and 𝐶𝐼𝑛𝑠𝑡

𝑝
 are constant and do 

not altering the model result.  

 

3.3. Model Formulation; Transient Conditions 

Unlike the steady-state conditions, in transient conditions, here the variability of river 

discharge and solute concentration, well pumping, and the obtained drawdowns were 

considered. To develop transient flow and solute transport equations, the concept of linear 

systems theory was applied. The Cooper-Jacob equation for computing drawdown of wells 

(Todd and Mays, 2005), the image wells concept for computing river aquifer interaction, and 
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Eq. (12) for computing the solute concentration were used under transient conditions. The 

linear systems theory was used to derive the required equations in variable pumping as well 

as variable solute concentration. 

3.4. Response Functions of Linear Systems 

The linear systems are those whose behavior may be predicted by a linear differential 

equation. Linear systems have two basic properties which are proportionality and additivity. 

Indeed, the response function of a linear system is a solution of its governing differential 

equations. In many situations such as computing drawdown or solute concentration in an 

aquifer, the governing equation is indeed linear, thus the rules of linear systems can be used 

in deriving the desired relations. 

If a system receives an input of unit value applied instantaneously (a unit impulse) at time τ, 

the response of the system at a later time t is described by the unit impulse response function 

u(t- τ). The response to the complete input time function I(τ) can then be obtained by 

integrating the response to its constituent impulses”, which is called convolution integral 

(Chow et al. 1988): 

𝑄(𝑡) = ∫ 𝐼(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 (29 

A unit step input response function g(t) is found from (29) with I(τ)=1 for τ≥0 as: 

𝑔(𝑡) = ∫ 𝑢(𝑡 − 𝜏)𝑑𝜏 = ∫ 𝑢(𝑙)𝑑𝑙
𝑡

0

𝑡

0

 (30 

Also, the unit pulse response function h(t) equals” (Chow et al. 1988): 

ℎ(𝑡) =
1

𝛥𝑡
[𝑔(𝑡) − 𝑔(𝑡 − 𝛥𝑡)] (31 

If Δt set equals unity (Δt=1), then: 

ℎ(𝑡) = 𝑔(𝑡) − 𝑔(𝑡 − 1) (32 

Further, for t<0, g(t)=0. The drawdown derived from Theis or Cooper-Jacob equations 

assuming Q=1 is a unit step response function. If the unit pumping shuts down at the end of 

t=1, the derived drawdown is unit pulse response function. Fig. 5 displays the unit step and 

unit pulse response functions of a confined aquifer.  
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Figure 5: Unit step (g(t)) and unit pulse (h(t)) response functions of a confined aquifer 

 

3.5. Flow Equation, Transient Condition 

The flow equation in RBF systems in transient conditions is required for computing 

drawdown of wells and river seepage to each well. These equations derived by integrating 

Cooper-Jacob equation, concept of image wells, and unit pulse response function are as 

follows:  

The drawdown in a confined aquifer due to constant well discharge Q may be derived using 

Cooper-Jacob equation (assuming 𝑢 =
𝑟2𝑆

4𝑇𝑡
< 0.01), 

𝑠(𝑡) =
𝑄𝑤
4𝜋𝑇

𝑙𝑛(
2.246𝑇𝑡

𝑟2𝑆
) (33 

Where, s(t) represents the drawdown at distance r from the pumping well at time t after the 

start of pumping, T and S show the aquifer transmissivity and storativity respectively, and t is 

time passed since beginning of pumping. This equation is linear due to pumping rate Qw. By 

setting Qw=1, the derived drawdown is a unit step response function: 

𝑔𝑤(𝑡) =
1

4𝜋𝑇
𝑙𝑛(

2.246𝑇𝑡

𝑟2𝑆
) (34 

Following that, the related unit pulse response function yield is: 

ℎ𝑤(𝑡) = 𝑔𝑤(𝑡) − 𝑔𝑤(𝑡 − 1) =
1

4𝜋𝑇
𝑙𝑛(

𝑡

𝑡 − 1
) (35 

Note that for t>1, the unit pulse response function hw(t) is independent of space, i.e. the 

locations of wells and aquifer storativity. Fig. 6 demonstrates gw(t) and hw(t) functions for a 

confined aquifer with T=1000 m2/day and S=0.01 for different distances from r=1m to r=100 

m.  
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Figure 6: Unit step response (gw(t)) and unit pulse response (hw(t)) functions for a confined aquifer with 

T=1000 m2/day and S=0.01 

 

For variable pumping, Qw(t), the resulting drawdown, is derived as:  

)t(Q)1tn(h)n(s w

N

1t
w +−= 

=

 (36 

This is a form of discrete convolution equation for a linear system (Chow et al., 1988). 

When a set of Nw wells exist, each with Qw(j,t), j=1, 2,…, Nw, by substituting hw(n-t+1) by 

hw(k, j, n-t+1) which is now called “unit response coefficient” of drawdown of wells, the 

obtained equation is: 

𝑠(𝑘, 𝑛) =∑∑ ℎ𝑤(𝑘, 𝑗, 𝑛 − 𝑡 + 1)𝑄𝑤

𝑁𝑤

𝑗=1

𝑛

𝑡=1

(𝑗, 𝑡) (37 

This equation is known as unit response matrix method, which was first introduced in 

groundwater systems optimization by Maddock (1972). Alimohammadi et al. (2009) later 

developed general equations for deriving response equations for point, linear, and surface 

excitations in aquifers.  

When there are some sources such as return flows or river leakage, these sources should also 

be considered. In RBF systems, river leakage exists and thus this river-aquifer interaction 

must be considered. One approach is using the concept of image wells. Fig. 7 illustrates a 

series of pumping wells (k,j,…) near a permanent river and its corresponding image wells 

(k’,j’,…). The drawdown in well k due to constant pumping (Qw) in well j based on the 

concept of image wells and Cooper-Jacob equation equals: 

𝑠𝑟(𝑡) =
𝑄𝑤
4𝜋𝑇

[𝑙𝑛(
2.246𝑇𝑡

𝑟2𝑆
) − 𝑙𝑛(

2.246𝑇𝑡

𝑟𝑖
2𝑆

)] =
𝑄𝑤
2𝜋𝑇

𝑙𝑛(
𝑟𝑖
𝑟
) =

𝑄𝑤
2𝜋𝑇

𝑙𝑛(
𝐿𝑘𝑗′

𝐿𝑘𝑗
) = 𝐶𝑡𝑒. (38 
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𝐿𝑘𝑗′ = {

2𝑥, 𝑖𝑓𝑗′ = 𝑘′

√𝐿𝑘𝑗
2 + 4𝑥2, 𝑖𝑓𝑗′ ≠ 𝑘′

 

(39 

Where, r and ri represent the distance from the pumping well and image well, respectively. 

Also Lkj=rw for k=j. Eq. (38) is the same as Eq. (1). Note that, sr(t) is independent of time. 

This condition is known as pseudo steady-state conditions (McWhorter and Sunada, 1977). In 

Eq. (38), Qw is constant and the equation is linear due to Qw. Therefore, the properties of 

linear systems could be used again in this case. By setting Qw=1, the derived net drawdown is 

unit step response function as: 

𝑔𝑟(𝑡) =
1

2𝜋𝑇
𝑙𝑛(

𝐿𝑘𝑗′

𝐿𝑘𝑗
) 

(40 

Also,  

ℎ𝑟(𝑡) = {
𝑔𝑟(𝑡), for t ≤ 1
0, for t > 1

 (41 

 

Figure. 7: Pumping wells (k,j,..), and corresponding image wells (k’,j’,…) 

 

For a set of Nw wells, we have: 

























=













=














−==

=

=

==

 

Nw

1j

kj

kj

Nw

1jw

Nw

1j
2
kj

2

kj
Nw

1j

Nw

j
2

kj

2
kj

rr

L

L

ln
T2

N

)
L

L
ln(

T4

1
)

SL

Tt246.2
ln()

SL

Tt246.2
ln(

T4

1
)j,k(g)t,j,k(g

'
'

'

'
'





 
(42 

The equation for net drawdown due to variable pumping rates Qw(j,t) of Nw wells is obtained 

as: 

𝑠𝑟(𝑘, 𝑛) =∑∑ ℎ𝑟(𝑘, 𝑗, 𝑛 − 𝑡 + 1)𝑄𝑤

𝑁𝑤

𝑗=1

𝑛

𝑡=1

(𝑗, 𝑡) (43 
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Based on Eqs. (41) and (42), it is reduced to: 

𝑠𝑟(𝑘, 𝑡) =
𝑁𝑤

2𝜋𝑇
𝑙𝑛 (

∏ 𝐿𝑘𝑗′
𝑁𝑤
𝑗′=1

∏ 𝐿𝑘𝑗
𝑁𝑤
𝑗=1

)∑𝑄𝑤

𝑁𝑤

𝑗=1

(𝑗, 𝑡) (44 

3.6. Solute Transport Equation-Transient Conditions 

The term transient here refers to difference in the river solute concentration. According to Eq. 

(13), the equation is linear due to constant concentration C0. Thus, as with flow equations, in 

this case, we have:  

𝑔𝑐(𝑥, 𝑡) =
1

2

[
 
 
 
 𝑒𝑟𝑓𝑐 [

𝑅𝑑𝑥 − (𝑉𝑥
2 + 4𝐷𝑥𝑅𝑑𝜆)𝑡

2(𝐷𝑥𝑅𝑑𝑡)0.5
] × 𝑒𝑥𝑝(

(𝑉𝑥 − (𝑉𝑥
2 + 4𝐷𝑥𝑅𝑑𝜆))𝑥

2𝐷𝑥
) +

𝑒𝑟𝑓𝑐 [
𝑅𝑑𝑥 + (𝑉𝑥

2 + 4𝐷𝑥𝑅𝑑𝜆)𝑡

2(𝐷𝑥𝑅𝑑𝑡)0.5
] × 𝑒𝑥𝑝(

(𝑉𝑥 + (𝑉𝑥
2 + 4𝐷𝑥𝑅𝑑𝜆))𝑥

2𝐷𝑥
)

]
 
 
 
 

 (45 

ℎ𝑐(𝑥, 𝑡) = 𝑔𝑐(𝑥, 𝑡) − 𝑔𝑐(𝑥, 𝑡 − 1) (46 

Where, gc(x,t) is the unit step response function and hc(x,t) is unit pulse response function or 

unit response matrix of the river leakage, and: 

𝐶𝑐(𝑥, 𝑛) =∑ ℎ𝑐(𝑥, 𝑛 − 𝑡 + 1) × 𝐶0(𝑡)

𝑛

𝑡=1

 (47 

Where, Cc(x,n) represents the solute concentration in the well within time period n, and C0(t) 

is the river solute concentration within time period t. Similarly, for well j within time period t, 

we have: 

𝐶𝑐(𝑥, 𝑗, 𝑛) =∑ ℎ𝑐(𝑥, 𝑗, 𝑛 − 𝑡 + 1) × 𝐶0(𝑡)

𝑛

𝑡=1

 
(48 

Where, hc(x, j, n-t+1) is the unit pulse response function or unit response matrix of the solute 

concentration for well j within time period n-t+1. 

The optimization model in transient conditions is similar to steady-state model, but using 

unsteady terms such as Qw(k,t) and Cc(x,t) instead of Qw(k) and Cc(x) as well as flow and 

transport formulation in transient conditions.  

 

4. Results 

In this section, two numerical examples have been presented. The first example illustrates the 

proposed formulation for the design of a hypothetical RBF system. In the design problem, the 

steady-state conditions, with some critical situations such as river discharge equal to 7Q10 (7-

day minimum discharge with 10 years return period) and high pollutant concentration could 
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be considered. The second example represents the analysis of an existing RBF system in a 

12-month period. Obviously for this example, transient conditions must be considered. 

 

4.1. Example Problem 1, Design of an RBF System  

A hypothetical example has been considered here to show how the developed proposed 

model works in the case of design problems. A small city located next to a relatively large 

permanent river has been considered. Its municipality has a plan for designing an RBF 

system as a backup water supply system. The design discharge (required demand) equals 0.5 

m3/s. The river’s 7Q10 discharge is far larger than the design discharge. Five wells have been 

considered in this plan, with Fig. 7 demonstrating a schematic view of this problem. The 

radius of wells equals 0.5 m and the distance between the ground surface and static 

groundwater table equals 10 m. The aquifer’s transmissivity and porosity equal 0.01 m2/s and 

0.3, respectively. The pumping house is located 20 m away from the collector pipe and in 10 

m upper elevation that has required as local network head. Other data of the problem are 

reported in Tables 1 and 2. Table 2 shows the parameters of disinfection treatment and piping 

facilities. Based on construction limitations, equal sizes have been considered here for the 

diameter of all collector pipes of the wells. The entire optimization model formulation and 

solution have been implemented in Microsoft Excel® as a spreadsheet model. Table 3 shows 

the problem solution results using Solver add-on of Microsoft Excel®.  

 

Figure 8: A schematic view of the example problem 1 

Table 1: Input parameters 

Parameter Unit Value 

Demand m3/s 0.5 

Wells radius m 0.5 

Transmissivity m3/s 0.05 

Porosity - 0.3 

Saturated thickness m 50 

Initial Lift m 10 

Initial concentration Mg/liter 500 

Minimum well distance m 20 

Maximum well distance m 100 

Retardation factor - 20 

Decay rate - 0.000001 

Plan duration Day 7 

Unit cost of energy 4/Kwh 0.00714 
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Table 2: parameters of disinfection treatment and pumping facilities 

Parameter Units Value 

Residual chloramines mg/L 3 

Alternative chlorine dose mg/L 6 

Alternative ammonia dose mg/L 2 

Cl2 needed mg/L 21.18 

Ammonia needed mg/L 0.99 

Cl2 unit cost $/ton 50 

Basis ammonia Kg/day 172.8 

NH4OH unit cost $/ton 250 

Plant availability - 0.95 

Collector-motor house distance m 20 

Collector-motor house ΔH m 10 

Pipes roughness m 0.00015 

Pipe velocity m/s 3 

 

Table 3: The problem solution brief results 

Well# 1,5 2,4 3 

Discharge (l/s) 68.7 97.6 167.3 

Drawdown (m) 1.45 2.54 3.54 

Distance from center (m) 85.0 22.7 0 

Used power (Kw) 9.65 15.01 27.78 

Used energy (Mwh) 1.621 2.522 4.667 

Pumping cost ($) 11.577 18.012 33.339 

X=36.7 m αL=4.18 

C=34.10 mg/lit Dx=0.000876 m2/s 

Pipe diameter=12 in. (0.3048 m)* 

Collector diameter=18 in. (0.4572) 

Total pumping cost= 93 $ 

Total conveyance cost= 91 $ 

Treatment cost=98 $ 

Total cost=281 $ 
*: Equal sizes have been considered here for all pipes’ diameter. 

(1 inch=2.54 cm) 

 

As presented in Table 3, the results of the model show that in this case the well alignment 

should be located 36.7 m away from the river. The wells’ discharges and distances are 

symmetric where Q1=Q5, Q2=Q4, l12=l45, and l23=l34. The central well has more while the 

side wells have less discharge. Also, the pollutant concentration in wells decreases to 34.1 

mg/L from the initial 500 mg/L in the river. Unexpectedly, the discharge of the central well is 

greater than and that of side wells is less than discharge of other wells. Since both pumping 

and conveyance costs have been considered here, the conveyance cost (which grows by with 

distancing off the wells) outweighed the pumping cost (which decreases with farther distance 

off wells) here. This suggests that if only the pumping cost has been considered, opposite 
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results can be expected. Three cost terms (pumping, conveyance, and treatment) approached 

each other in this case, suggesting that none of them is ignorable.  

 
4.1.1. Sensitivity Analysis 

A local sensitivity analysis has been implemented here for assessing the relative importance 

of the model parameters. Five parameters including unit cost of energy (UCE), retardation 

factor (Rd), transmissivity (T), porosity (Ө), and decay rate (λ) have been considered. Fig. 9 

displays the variations of variable x against the variations of the five above-mentioned 

parameters. As can be seen, the variations of x versus T are ascending, but for other 

parameters, they are decreasing. With elevation of T, the value of K has grown (the thickness 

of the saturated layer was considered constant.). Thus, the seepage or solute transport velocity 

increases, while for a given concentration, the value of x drops. The variable x is more or less 

sensitive to all parameters with the sensitivity being greater on the left-hand side (values of 

parameters that are less than initial values) than on the right-hand side (values of parameters 

that are greater than the initial values). The sensitivity of T and UCE are almost equal but 

with opposite directions and both are less sensitive than the other three variables. Rd, Ө, and λ 

revealed similar sensitivity. 

 

Figure 9: Variations of x against the variations of five parameters 

 

Fig. 10 illustrates the variations of variable L12 against the variations of the five parameters. 

L12 is not sensitive to variations of T, but is sensitive to other variables. In this regard, UCE is 

less sensitive than the other three variables indicating the same behavior. Again the 

sensitivity has been greater on left-hand side.  
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Figure 10: Variations of L12 against the variations of five parameters 

 

Fig. 11 reveals the results of sensitivity analysis for concentration C. C is sensitive to all 

parameters especially to UCE and T. By increasing UCE, x declines (Fig. 9), thereby 

augmenting C, but by increasing T, x rises (Fig. 9), thereby lowering C. The sensitivity of C 

to Rd, Ө, and λ has been similar, i.e. the variations of these parameters show similar effect on 

C. Increasing Rd means lengthening retarding and reducing the solute transport velocity, 

thereby lessening C. Also, increasing Ө means diminished seepage velocity and again lower 

solute transfer velocity. Finally, increasing λ signifies greater contaminant decay and lower 

concentration in the wells. To assess this further, Fig. 12 reveals the variations of C/C0 

against the variations of Ө/ Ө0, Rd/ Rd0, and λ/ λ0 where C0 =500 mg/L, Ө0=0.3, Rd0=20, and 

λ0=0.000001. As can be seen, the variations for Rd/ Rd0 and λ/ λ0 are the same (see Eq. (14)), 

while for Ө/ Ө0, there is a little difference with the two other curves. 

 

Figure 11: Variations of C against the variations of five parameters 

 

Fig. 13 displays the variations of average drawdown in five wells (s_ave) against the 

variations of the five parameters. Drawdown is an inverse function of transmissivity (Eq. (1)), 

thus is more sensitive to 
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Figure 12: Variations of C/C0 against the variations of Ө/ Ө0, Rd/ Rd0, and λ/ λ0 

 

T than to other parameters. In smaller values of parameters, UCE is less sensitive than Rd, Ө, 

and λ (these are solute transport parameters and are not directly related to drawdown, but they 

directly affect distance x. Also, because s_ave is related to x (i=s_ave/x where i is gradient), 

thus three parameters are indirectly related to s_ave.). However, for larger values, s_ave is 

relatively less sensitive to UCE, Rd, Ө, and λ. 

Fig. 14 indicates the variations of pumping cost against the variations of the five parameters. 

Except for UCE, other parameters seem to be less sensitive. Since T directly affected the 

drawdown and thus the required energy, it is more sensitive than the other three parameters 

(which are transport parameters). Also, Fig. 15 exhibits the variations of conveyance cost 

against the variations of the five parameters. Except for UCE, other parameters have been 

insensitive.  

 

 

Figure 13: Variations of average drawdown in wells against the variations of five parameters 
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Figure 14: Variations of pumping cost against the variations of five parameters 

 

Figure 15: Variations of conveyance cost against the variations of five parameters 

 

Since there are several output variables (x, C, Costs, …), for reaching a conclusion on the 

sensitivity analysis, a dimensionless parameter defines as: 

𝑆𝑒𝑛𝑠𝑝 =
1

𝑛𝑦
∑∑(

|
𝑦𝑖−𝑦0

𝑦0
|

|
𝑥𝑖−𝑥0

𝑥0
|
)

𝑛𝑖

𝑖=1

𝑛𝑦

𝑦=1

 (49 

Where, Sensp is the sensitivity of parameter p,  yi represents the value of variable y (y∈{x,C, s, 

Cost, …}) corresponding to the value of parameter xi (x∈{UCE, Rd, T, Ө, λ}). Table 4 

presents the results of computing Eq. (48). According to this table, UCE is a relatively more 

sensitive while Rd is a relatively less sensitive parameter, but generally all five parameters 

have been sensitive. Figs. 9-15 are in line with this conclusion. 
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Table 4: Sensitivity of five parameters 

Parameter Sensitivity Rank 

UCE 0.69 1 

Rd 0.30 5 

T 0.45 2 

ɵ 0.34 4 

λ 0.37 3 

 

4.2. Example Problem 2: Analysis of an RBF System 

The purpose of this example is showing the ability of the proposed transient formulation in 

computing the solute concentration in a well next to a river, and the effects of changing 

parameters on the concentration. A pumping well is located next to a permanent river at 

distance x= 30 m. The aquifer and transport parameters are similar to example 1 (T=0.05 

m2/s, K=0.001 m/s, Rd=20, λ=10-5,Ө=0.3). In pseudo-steady conditions, the drawdown in the 

well equals 9 m. Table 5 reports the variations of the concentration of a solute pollutant in the 

river within a 12-month period (the concentration had been assumed constant through each 

month). Then, the concentration should be computed in the well water within each period. 

 

Table 5: Concentration of pollution in the river and in the well 

Month (t) C0(t) C(t) 

1 1000 653.92 

2 1300 1008.82 

3 1100 928.49 

4 800 701.47 

5 1000 784.08 

6 700 624.83 

7 1100 833.29 

8 1200 961.33 

9 500 520.58 

10 1000 736.74 

11 800 679.83 

12 700 585.67 
 

Using Eq. (45) and considering a computation time step equal to 1 day for greater accuracy, 

Fig. 16 illustrates the unit step (gc) and unit pulse (hc) response functions of the well 

concentration. Also Fig. 17 reveals the variations of concentration in the river (C0(t)) and in 

the well (C(t)) in a 12-month period. Attenuation and time lag of concentration in the well’s 

water are clear in the figure. 
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Figure 16: unit step (g) and unit pulse (h) response functions of the well’s concentration 

 

Figure 17: Variations of concentration in the river (C0(t)) and in the well (C(t)) 
 

In the first example, it was observed that Rd, T, Ө, and λ are sensitive parameters of flow and 

transport models. Here, the effect of these parameters on the variations of concentration and 

solute transport is observed. Fig. 18 displays the gc and hc functions for different values of 

Rd. By increasing Rd (retardation), the solute is more retarded and thus gc and hc functions 

decline. Fig. 19 shows the solute concentration variations for different values of Rd. 

Fig. 20 shows the gc and hc functions for different values of T. By increasing T (increasing 

seepage velocity), gc and hc functions as well as concentration grow. Fig. 21 demonstrates the 

variations of solute concentration for different values of T. 

Fig. 22 shows the gc and hc functions for different values of Ө. By increasing Ө (decreasing 

seepage velocity), gc and hc functions as well as concentration drop. Fig. 23 exhibits the 

variations of solute concentration for different values of T. 

Fig. 24 reveals the gc and hc functions for different values of λ. By increasing λ (increasing 

decay), gc and hc functions as well as concentration fall. Fig. 25 indicates the variations of 

solute concentration for different values of T. At relatively large values of λ (say λ=10-5), the 

concentration in the well reaches zero (one method of protecting the well’s water is using 

permeable reactive barriers by nanoparticles with a relatively large λ). 
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Figure 18: gc and hc functions of the well’s concentration for different values of Rd 

 

 

Figure 19: Variations of concentration in the well (C(t)) for different values of Rd 

 

 

Figure 20: gc and hc functions of the well’s concentration for different values of T 
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Figure 21: Variations of concentration in the well (C(t)) for different values of T 

 

 
Figure 22: gc and hc functions of the well’s concentration for different values of Ө 

 

 
Figure 23: Variations of concentration in the well (C(t)) for different values of Ө 
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Figure 24: gc and hc functions of the well’s concentration for different values of λ 

 

 

Figure 25: Variations of concentration in the well (C(t)) for different values of λ 

 

5. Conclusion 

Riverbank Filtration (RBF) systems utilize the natural filtration processes of riverbed and 

aquifer materials to purify water as it moves from a surface water source to extraction wells. 

The application of Linear Systems Response Functions in RBF systems enhances their 

design, management, and operational efficiency, particularly in modeling and predicting 

groundwater flow and contaminant transport under variable conditions. 

Clearly, the novelty of this work is as follow: 

Using the concept of response functions of linear systems in modeling of contaminant 

transport in groundwater systems. Linear Systems Response Functions, such as unit pulse 

response functions, are used to model the drawdown of groundwater table caused by pumping 

wells, and predicting the solute concentration extending in the aquifer.  

In this paper, a comprehensive optimization model for the design of riverbank filtration 

systems has been developed  with the aim of minimizing the total cost of the system, 

encompassing the locations and pumping rates of wells, as well as the dimensions of other 
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system components. This method enables the analytical calculation of the optimal location 

and pumping rate of wells in the RBF system. A simulation model was also developed for 

analyzing these systems. In these models, the analytic solutions of the equations of 

groundwater flow and pollutant transport were used.  

The analysis indicated that: 

- For t>1, the unit pulse response function of drawdown hw(t) is independent of locations of 

wells and aquifer storativity. 

- The transient flow equation in RBF systems reaches steady (pseudo steady) conditions. The 

drawdown in variable pumping for a given transmissivity and distance of wells is only a 

function of the pumping pattern of wells. 

- Solving the steady optimization problem shows that unexpectedly, the discharges of the 

central and side wells were greater than and smaller than those of other wells. As both 

pumping and conveyance costs have been considered here, the conveyance cost (which 

increases with the distance of wells) dominated the pumping cost (which drops with the 

distance of wells) here, suggesting that if only pumping cost has been considered, opposite 

results can be expected. 

- The sensitivity analysis revealed that UCE (unit cost of energy) is a relatively more 

sensitive and Rd is relatively less sensitive parameter, but generally all five parameters are 

sensitive. For four system parameters (other than UCE), the sensitivity ranking was: 

transmissivity (T), decay rate (λ), porosity (ϴ), and retardation factor (Rd) (implementing 

transient model by changing these four parameters confirmed the above-mentioned result). 

- The proposed simulation model formulations are useful for assessing the computability of 

the variations of solute concentration in RBF systems, and the effects of changing parameters 

in the solute concentration in steady-state and transient conditions. 
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Abstract: 

Eutrophication, which refers to the excessive enrichment of water bodies with nutrients, has 

emerged as a significant global environmental and economic crisis. This complex ecological 

process primarily results from extensive human activities including the overuse of chemical 

fertilizers in agriculture, discharge of untreated domestic and industrial wastewater, and intensive 

livestock and aquaculture systems. The influx of large amounts of nitrogen and phosphorus 

compounds into aquatic ecosystems disrupts natural nutrient cycles, leading to algal blooms and 

ultimately severe depletion of dissolved oxygen (hypoxia). The devastating consequences of this 

phenomenon include biodiversity loss, the creation of dead zones in coastal waters, threats to 

fisheries and aquaculture industries, and substantial increases in water treatment costs for drinking 

and industrial purposes. To address this multifaceted challenge, various solutions have been 

proposed, including chemical methods (such as coagulants), physical approaches (like artificial 

aeration), and biological techniques (using nutrient-absorbing plants and microorganisms). 

However, international experience demonstrates that only through integrated management 

strategies—combining smart policymaking, continuous water quality monitoring, and the 

development of clean technologies in agriculture and industry, and active local stakeholder 

engagement—can we effectively control this problem and safeguard water resources for future 

generations . 

Keywords: Eutrophication, Harmful Algal Bloom (HAB), Water Quality Management, Nutrient 

Load. 
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1. Introduction 

Water stands as the fundamental building block of life, an irreplaceable resource that sustains all 

terrestrial ecosystems. This remarkable chemical substance – characterized by its transparency, 

neutral taste, and absence of color or odor – constitutes approximately 71% of Earth's surface. Its 

critical importance extends across biological, environmental, and socioeconomic domains, making 

responsible water management absolutely imperative. Contemporary water resources face 

unprecedented challenges including severe scarcity, escalating pollution levels, and inefficient 

utilization patterns. Implementing robust conservation measures has therefore become essential to 

safeguard water security for current and future populations. This necessitates adopting sustainable 

management approaches, promoting water preservation initiatives, and enforcing stringent anti-

pollution regulations (Islam et al., 2020). 

As a finite yet indispensable resource, water demands meticulous stewardship to maintain its 

availability. Strategic water storage solutions coupled with rigorous quality control measures form 

the cornerstone of effective water governance (Elhaga et al., 2020)  .The primary objectives of 

water storage encompass drought mitigation, reliable supply assurance, and climate resilience 

enhancement (Yousefi et al., 2019)  .Subsequent water quality monitoring becomes equally vital, 

addressing critical considerations for public health protection, environmental conservation, and 

agricultural/industrial requirements (saboktakin et al., 2022). 

Water's extraordinary value manifests through its life-sustaining properties, ecosystem support 

functions, economic facilitation, and community enrichment capabilities. Proper recognition of 

water's centrality and implementation of science-based conservation frameworks constitute pivotal 

steps toward achieving planetary sustainability (Elhaga et al., 2020) . 

Both surface water bodies and groundwater aquifers serve as crucial reservoirs supporting human 

civilization and natural biodiversity (Ma et al., 2020)  . Alarmingly, escalating pollution trends have 

recently compromised these resources, particularly affecting reservoirs and underground water 

tables. Contamination occurs through identifiable point sources and diffuse pathways, originating 

from either natural processes (geological leaching, watershed degradation) or human activities 

(municipal wastewater, agricultural runoff containing agrochemicals, livestock operations, 

industrial effluents, and mining byproducts). Comprehensive understanding of these pollution 

mechanisms proves essential for developing targeted remediation strategies (Khamidun, 2022) .  

Among various water quality threats, eutrophication emerges as particularly detrimental to 

reservoir ecosystems(Ayele & Atlabachew, 2021) .  Eutrophication refers to a condition where 

nutrient concentrations (particularly phosphorus and nitrogen) gradually increase in water bodies, 

leading to excessive growth of aquatic plants and algae. This phenomenon represents one of the 

most serious challenges facing freshwater systems and has a long history in water resource 

management. Although eutrophication is a natural process occurring in aquatic ecosystems over 
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centuries, human activities have significantly accelerated its pace and extent.  The mechanism 

involves enhanced productivity of aquatic ecosystems due to accumulation of organic matter that 

decomposes into simpler compounds. The most visible manifestation is phytoplankton blooms, 

which not only reduce water clarity but also severely degrade water quality. These blooms limit 

sunlight penetration, endangering coastal vegetation and disrupting ecological balance.  
Eutrophication-induced changes lead to biodiversity loss and dramatic declines in populations of 

larger aquatic fauna like fish and waterfowl. The primary source of excess nutrients is typically 

surface runoff carrying terrestrial ecosystem products into water bodies. While previously 

considered irreversible, recent successes in several lakes have demonstrated that proper nutrient 

input management can reverse eutrophication. 

2. Factors Influencing Eutrophication 

The phenomenon of eutrophication is considered one of the major challenges facing most lakes 

and dam reservoirs. It is associated with the growth of algae and other plankton, and a reduction 

in dissolved oxygen, which leads to the deterioration of water quality and mass fish mortality along 

with the death of other aquatic organisms (Astuti et al., 2022).Eutrophication is one of the most 

significant indicators of water pollution and the process of ecosystem degradation and aging of 

water bodies (Song & Burgin, 2017)  .The degree of a reservoir’s vulnerability to eutrophication is 

determined by the concentration of nutrients and the biomass of aquatic vegetation in the water. 

Eutrophication is a biological process driven by the presence of nutrients such as nitrogen and 

phosphorus, which leads to the proliferation and growth of chlorophyll-containing organisms in 

the reservoir (Figure 1). 
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Figure 1: Factors Influencing the Eutrophication Phenomenon in the Reservoir 

The concentration of nutrients and the biomass of aquatic vegetation in the water determines the 

degree to which a reservoir is affected by eutrophication. This classification is defined in three 

levels: 

• Oligotrophic level refers to lakes that have low nutrient concentrations, low biomass of 

aquatic vegetation, and high water transparency. 

• Eutrophic level includes lakes with high nutrient concentrations, high biomass of aquatic 

vegetation, and low water column transparency. 

• Mesotrophic level represents an intermediate condition between the two aforementioned 

states(Tugrul et al., 2019). 

Natural eutrophication is a process that occurs over centuries as part of the ecosystem's life cycle. 

However, human activities have accelerated this process, causing it to occur more rapidly and with 

immediate consequences. The main cause of eutrophication is the entry of large amounts of readily 

available nutrients into water bodies, leading to increased fertility and excessive growth of plants 

and algae(Wu et al., 2017). Some of the factors that intensify the eutrophication process by 

increasing the nutrient content of water sources include: 

2.1. Discharge of Urban and Industrial Wastewater 

The discharge of urban and industrial wastewater into water bodies is considered one of the main 

factors exacerbating eutrophication. These effluents contain significant amounts of nitrogen and 

phosphorus compounds, which are key nutrients for the growth of algae and aquatic plants. In 

many cities, outdated or inefficient wastewater treatment systems are unable to completely remove 

these nutrients, resulting in their direct discharge into rivers, lakes, and groundwater resources. 

The increased concentration of these substances in water leads to excessive algal growth and the 

formation of algal blooms, which have many negative consequences for aquatic 

ecosystems(Preisner et al., 2021). 

2.2. Agricultural Activities 

Modern agriculture, through the widespread use of chemical and organic fertilizers, significantly 

contributes to nutrient enrichment in water resources. These fertilizers are rich in nitrogen and 

phosphorus, essential for crop growth. However, a large portion of these substances, due to over-

irrigation or heavy rainfall, is carried away through surface runoff into nearby water bodies. Their 

entry into surface and groundwater disrupts the natural balance of aquatic ecosystems and creates 

conditions conducive to rapid growth of algae and aquatic plants—an issue especially evident in 

regions with dense agricultural activity(Mishra, 2023). 
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2.3. Livestock Wastewater 

Livestock farming also plays a significant role in increasing nutrient loads in water resources. 

Animal waste contains high levels of organic and nutrient-rich matter, which, if not properly 

managed, can infiltrate water bodies. In many cases, these wastes are directly discharged into rivers 

or seep into groundwater, increasing nitrogen and phosphorus concentrations. This not only leads 

to eutrophication but also degrades water quality for human and agricultural use. 

2.4. Discharge of Untreated Wastewater 

In many parts of the world, especially in developing countries, human and industrial wastewater 

is directly discharged into water bodies without any treatment. These wastewaters contain high 

levels of nutrients, organic matter, and various pollutants, quickly increasing the nutrient load in 

water. This not only results in excessive algal growth but also reduces dissolved oxygen levels, 

causing fish kills and harming other aquatic life(Preisner, 2020). 

2.5. Urban Development and Riparian Zone Degradation 

Rapid urban development and construction within riparian zones and wetlands reduce the natural 

self-purification capacity of these ecosystems. The loss of natural vegetation around water bodies 

increases soil erosion and the entry of sediments and nutrients into the water. Additionally, 

unregulated construction can disrupt natural water flow, promoting nutrient accumulation and 

algal growth(Oliver et al., 2019). 

2.6. Soil Erosion 

Soil erosion, as a natural process, plays a major role in transporting nutrients to water bodies. When 

soil is eroded by heavy rainfall or human activities, large amounts of organic and mineral matter 

are carried into rivers and lakes via runoff. These materials include nitrogen, phosphorus, and other 

elements essential for plant growth, potentially intensifying eutrophication(Lin et al., 2016). 

2.7. Decomposition of Organic Matter in Water 

The decomposition of organic matter in water, such as fallen leaves or aquatic plant residues, is a 

natural process that gradually releases nutrients. Under normal conditions, this occurs slowly and 

maintains ecosystem balance. However, when the quantity of organic matter increases due to 

human activities, the decomposition process accelerates, rapidly raising nutrient concentrations in 

the water—resulting in algal blooms and deteriorated water quality(Deng et al., 2023). 
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2.8. Intense Rainfall 

Heavy and torrential rains can wash large amounts of nutrients from watersheds into aquatic 

ecosystems. These include agricultural fertilizers, animal waste, and other pollutants that quickly 

enter rivers and lakes during storms. This phenomenon is especially common in areas with reduced 

vegetation cover or erosion-prone soils(H. Xu et al., 2019). 

2.9. Rising Water Temperatures 

Rising water temperatures due to climate change or human activity can accelerate the growth of 

algae and aquatic plants. Warmer water also holds less dissolved oxygen, favoring species that can 

tolerate low-oxygen conditions. These changes disrupt the natural balance of aquatic ecosystems 

and intensify eutrophication(Zhao et al., 2022). 

2.10. Inefficient Treatment Systems 

Outdated or poorly functioning wastewater treatment systems often fail to remove all nutrients 

from effluents. As a result, even treated wastewater may still contain significant levels of nitrogen 

and phosphorus, which are discharged into water bodies. This issue is especially problematic in 

densely populated or industrial areas where large volumes of wastewater are produced. 

2.11. Poor Watershed Management 

Improper watershed management practices—such as unsustainable agriculture or destruction of 

vegetative cover—can lead to increased pollution and nutrient runoff into water bodies. This not 

only worsens eutrophication but also reduces water quality and degrades aquatic ecosystems. 

2.12. Encroachment on Water Body Buffer Zones 

Construction and destruction of natural areas such as wetlands and coastal forests around water 

bodies reduce these ecosystems' ability to filter nutrients and pollutants. This leads to an increase 

in nutrient concentrations in the water and worsens eutrophication(Li et al., 2017). 

2.13. Inadequate Water Quality Monitoring: 
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Insufficient water quality monitoring and failure to detect nutrient increases in a timely manner 

can exacerbate eutrophication. In many cases, control measures are only implemented once 

eutrophication has reached a critical stage(Kapsalis & Kalavrouziotis, 2021). 

 

 

2.14. Decline in Filter-Feeding Species 

Filter-feeding species like freshwater mussels play a vital role in controlling nutrient levels in 

water. Their decline due to pollution or overharvesting can increase nutrient concentrations and 

worsen eutrophication. 

2.15. Changes in Microbial Communities 

Shifts in the microbial communities within water bodies can affect the natural nutrient cycling 

processes. Some microorganisms are crucial for organic matter decomposition and nutrient 

recycling; changes in their populations can disrupt ecosystem balance(Han et al., 2020). 

 

3. General Process of Eutrophication 

3.1. Nutrient Accumulation 

The initial stage of the eutrophication process involves the gradual accumulation of nutrients—

primarily nitrogen and phosphorus—in various ecosystems. These nutrients can accumulate 

through both natural processes and anthropogenic activities. Natural mechanisms such as rainfall, 

soil erosion, landslides, and storms can transport nutrient-rich soil from surrounding lands into 

aquatic systems. In contrast, human activities such as the discharge of domestic and industrial 

wastewater and the expansion of agricultural and residential areas contribute directly or indirectly 

to the nutrient load in nearby water bodies. At the beginning of this process, aquatic ecosystems 

are typically oligotrophic, meaning they have low nutrient availability. As nutrient concentrations 

increase, microorganisms and aquatic plant species utilize them to boost their productivity. 

3.2. Increased Productivity 

Elevated nutrient concentrations in aquatic systems lead to a significant increase in the production 

of phytoplankton and aquatic plants. These ecosystems host a diverse community of 

microorganisms capable of utilizing a wide range of simple and complex nutrients. As a result, the 

biomass of both microorganisms and aquatic flora increases substantially. When these organisms 
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die, their biomass accumulates in the system. This cycle continues as long as nutrients remain 

sufficiently available. 

3.3. Algal Bloom Formation 

Excessive algal growth leads to the formation of algal blooms on the surface of water bodies. These 

blooms not only produce oxygen through photosynthesis but also trigger a feedback loop, in which 

the decomposition of dead algae releases additional nutrients, further intensifying eutrophication. 

Algae near the surface receive ample sunlight, allowing them to photosynthesize and proliferate 

rapidly. As the blooms expand, sunlight penetration into deeper water layers diminishes, disrupting 

photosynthesis in other aquatic plants. Consequently, dissolved oxygen levels decline, leading to 

algal death. The decomposition of these dead organisms by bacteria further depletes the remaining 

oxygen. This sequence of events ultimately degrades water quality and threatens the health of 

aquatic life (Dorgham, 2014; Targamadzė, 2019; Vinçon-Leite & Casenave, 2019). 

4. Effects/Problems of Eutrophication 

Eutrophication is considered a form of water pollution, affecting approximately 30 to 40 percent 

of the world's water bodies. In addition to polluting water, it has various negative impacts on 

ecosystems and living organisms. 

4.1. Increase in Phytoplankton Biomass 

One of the most prominent consequences of eutrophication is the increased production of 

phytoplankton, especially in the form of algal blooms. These blooms may include toxic species 

such as cyanobacteria, which are harmful to both aquatic life and humans. They also reduce water 

clarity and overall water quality. 

4.2. Oxygen Depletion 

Algal blooms block sunlight from reaching underwater plants, reducing photosynthesis and 

leading to plant death. The decomposition of these plants by bacteria consumes the remaining 

oxygen, creating anoxic conditions that promote the production of toxic and foul-smelling gases. 

4.3. Loss of Biodiversity 

The dominance of algal species limits light and nutrient availability for other aquatic organisms, 

resulting in a significant decline in biodiversity. 

4.4. Water Pollution 

Algal blooms reduce water transparency, making the water unsafe for drinking and recreational 

use. They also diminish the aesthetic value of water bodies(Kotsiuba et al., 2022; Zhao et al., 

2022). 
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5. Solutions for Eutrophication    

Eutrophication can be addressed through a variety of chemical, physical, and environmental 

strategies, especially when preventive measures are insufficient. 

5.1. Chemical Methods    

When conventional treatments fail to adequately reduce nutrient concentrations, chemical agents 

can effectively control eutrophication. Chemical methods are typically more suitable for lakes with 

severe eutrophic conditions leading to blue-green algal blooms. Worldwide, substances such as 

copper sulfate (CuSO₄), herbicides, algaecides, ferrous sulfate, aluminum sulfate, calcium oxide, 

ferric chloride, magnesium sulfate, magnesium chloride, alum, and iron anode/aluminum cathode 

electrodes are used for chemical control of eutrophication (Akinnawo, 2023; Zhang et al., 2021) . 

 5.2. Physical Methods    

Physical methods are recognized as crucial engineering measures and the most important 

corrective actions for eutrophication in lakes, primarily targeting the reduction of internal nutrient 

loading.   

5.2.1. Dilution and Flushing    

  Dilution and flushing involve introducing water from an external source or another lake with 

lower nutrient concentrations into the eutrophic lake. Ideally, the added water should have higher 

calcium (Ca²⁺) and bicarbonate (HCO₃⁻) content, directly reducing nutrient concentrations. Lakes 

with low nutrient content naturally limit algal growth and maintain good water clarity, making 

them suitable for dilution. Winter is recommended for this process due to slower algal growth and 

easier access to high-quality water. However, feasibility studies on sediment removal must be 

conducted before implementation.  While dilution and flushing are simple and rapid techniques 

effective for small water bodies, their success heavily depends on a consistent supply of high-

quality water. For medium to large water bodies, the high investment and extended drainage time 

make implementation challenging(Chen et al., 2024).   

5.2.2. Deep Aeration    

  Aeration is a physical technique used to increase oxygen levels in water bodies, preventing 

stratification and reducing internal phosphorus cycling. Deep aeration serves two primary 

purposes: (1) increasing dissolved oxygen (DO) without altering the water column and (2) creating 

a more favorable environment for benthic organisms and enhancing food supply. It also helps 

reduce ammonia (NH₃), iron (Fe), manganese (Mn), and other ionic substances.  Countries like the 

Netherlands and the UK have successfully applied deep aeration in small lakes and reservoirs with 
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positive results. However, economic and technological constraints limit its effectiveness in large 

lakes, making it more suitable for smaller water bodies(Zhang et al., 2020).   

5.2.3. Sediment Dredging    

  Sediment dredging is a vital tool for rapidly improving water quality in eutrophic lakes affected 

by internal phosphorus (P) loading from sediments. Dredging is a direct and effective restoration 

method, but it deepens the water body, altering nutrient concentrations and abiotic water column 

dynamics, thereby impacting ecological balance(Yang et al., 2024) . 

5.2.4. Other Physical Methods:    

Artificial Mixing: Used to prevent eutrophication and cyanobacterial growth in lakes.   

Mechanical Harvesting: Aquatic plants and algae absorb large amounts of nutrients. Harvesting 

them directly improves surface water ecology. Though simple and safe, this method is energy-

intensive and increases disposal costs.   

Sediment Capping: Techniques like sand, plastic films, or fly ash can reduce phosphorus release 

from sediments but may negatively affect submerged aquatic plant development.   

5.3. Biological Methods 

Ecological restoration of lakes is a key criterion for the reestablishment of natural ecosystem cycles 

and is considered the ultimate goal of eutrophication control. Ecological restoration is used to 

regulate lake stability and suppress the circulation rate of nutrients by reconstructing and 

rehabilitating relatively complex ecosystems, ultimately aiming to recreate a healthy ecosystem. 

Biological methods can enhance the interactions between microorganisms and aquatic organisms, 

as well as the water’s self-purification capacity during pollution treatment. Bioremediation 

employs specific microorganisms, aquatic plants, and aquatic animals to degrade, absorb, and 

transform nutrients in lakes. Factors affecting bioremediation include nutrient levels, pH, 

temperature, and inhibitory substrates or metabolites (Paul et al., 2021) . 

Phosphorus is one of the key elements inducing eutrophication; therefore, its removal from various 

sources is essential. One natural tool for phosphorus removal is periphyton. These microbes 

contribute to phosphorus removal by absorbing, precipitating, and filtering it from the water. 

Various phytoremediation techniques have also been proposed to effectively reduce water toxicity 

(C. Xu et al., 2023) .  Phytoremediation is an effective method for controlling, regulating, and 

mitigating eutrophic environments. Aquatic plants can efficiently absorb nutrients during their 

growth and are capable of removing, degrading, or isolating harmful substances from the 

environment. It has been shown that different plant species exhibit varying pollutant removal 
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efficiencies in floating island systems. Aquatic plants can be classified as emergent, floating-

leaved, free-floating, submerged, and wetland plants. They are usually selected based on 

effectiveness and cost-efficiency. Some of the most commonly used species include Canna, Typha, 

Scirpus, water hyacinth (Eichhornia crassipes), duckweed (Lemna), Vetiveria zizanioides, Acorus 

calamus, and Cyperus alternifolius. Reports indicate that, compared to other plants, Canna shows 

superior performance in terms of improving dissolved oxygen (DO) levels, hydraulic efficiency, 

and nutrient removal attributed to plant uptake.  

 
Figure 7: Lake Phytoremediation Using Floating Islands 

 

Algae play a crucial role in controlling reservoir eutrophication through various mechanisms. 

Research has shown that increasing direct hydrodynamic effects—such as flow velocity and shear 

stress—can inhibit algal growth, while intensified indirect effects—such as nutrient 

redistribution—may promote algal blooms.  Additionally, the use of ultrafine (micro/nano) bubbles 

has proven effective in controlling algal growth in water bodies, offering an environmentally 

friendly and chemical-free solution. Moreover, strategies such as biomanipulation—including the 

removal of zooplanktivorous fish and application of biological control agents—have shown 

promise in managing algal blooms and invasive aquatic weeds. These approaches underscore the 

importance of integrating biological control methods with nutrient load management to effectively 

combat eutrophication. 
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Table 1: Summary of advantages and disadvantages of reservoir eutrophication control methods 

Advantages Disadvantages Method 

Direct and fast effectiveness 

Simple implementation 

High cost 

Not suitable for long-term treatment 

Risk of secondary pollution 

Chemical 

Simple and easy to implement 

Quick and visible effects in the short term 

High operational and maintenance 

costs 

Temporary effect 

Potential harm to ecosystems 

Physical 

Cost-effective 

Sustainable and comprehensive method 

Less secondary pollution 

Suitable for both small and large-scale 

systems 

Effectively reduces pollutant concentration 

Long treatment time Biological 

6. Conclusion 

This comprehensive review has identified eutrophication as one of the most critical threats to the 

quality and sustainability of aquatic resources. In the section on influencing factors, it was 

demonstrated that nutrient inputs—particularly nitrogen and phosphorus—can enter aquatic 

ecosystems through chemical fertilizers, domestic and industrial wastewater, concentrated animal 

feeding operations, and natural processes. These inputs create favorable conditions that 

significantly accelerate the eutrophication process. Identifying and managing these nutrient 

sources is a fundamental starting point for any sustainable control strategy.  An analysis of the types 

and processes of eutrophication revealed that while natural eutrophication occurs over centuries, 

cultural eutrophication—driven by human activities—can result in serious environmental and 

economic consequences within much shorter timeframes. The impacts of eutrophication, including 

toxic algal blooms, decreased dissolved oxygen levels, and loss of biodiversity, serve as warning 

signals for local communities, aquaculture industries, and water consumers.  Ultimately, the 

proposed solutions highlight that no single method can effectively resolve eutrophication on its 

own. A combination of chemical (e.g., phosphorus coagulants), physical (e.g., dilution, aeration, 

sediment dredging), and biological (e.g., bioremediation, ecological restoration) methods—

applied through an integrated, nutrient load-based management approach—offers the greatest 

likelihood of success. Furthermore, continuous water quality monitoring and the application of 

advanced technologies for rapid detection of key ecological parameters are essential for ensuring 

the long-term effectiveness of these interventions.  In conclusion, tackling eutrophication and 

ensuring the sustainability of water resources requires a coordinated effort among policymakers, 

environmental experts, water project implementers, and local communities. Through the adoption 
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of preventive and corrective strategies, it is possible to steer development toward the effective 

protection of this invaluable resource. 
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Abstract 

Given the rapid pace of urban growth and urbanization—manifested in increasing population and 

human demand for residential land—there is an urgent need for scientifically sound and well-

structured development planning. Among the key principles of urban planning and land-use 

management are the assessment of natural habitat quality, land potential, and optimal site selection, 

all aimed at minimizing environmental degradation while maximizing urban efficiency. 

Accordingly, evaluating the quality and degree of degradation of natural habitats is essential for 

guiding urban development in Qamsar, a region characterized by sensitive environmental 

conditions, unique geography, and economic dependence on natural resources. This study 

employed the Habitat Quality model from the InVEST software suite to assess habitat quality in 

the context of urban development. Unlike traditional methods such as AHP and fuzzy logic, the 

InVEST model accounts for anthropogenic threats and quantifies habitat degradation and quality 

loss due to urban infrastructure. Input data included a classified land use/land cover (LULC) map 

and spatial layers of proximity to roads, rivers, and service centers, all developed within ArcGIS 

Pro. Sensitivity to threats and habitat status were determined for each land use class based on 

authoritative InVEST documentation and scientific literature. Results revealed that low-quality 

habitats are predominantly located in the northwest and areas adjacent to human settlements, 

suggesting these zones as suitable priorities for future urban expansion. Conversely, regions with 

high ecological value and habitat quality should be excluded from urban growth to preserve their 
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environmental integrity. The InVEST model thus serves as a robust and practical ecological 

analysis tool, enabling environmentally informed and sustainable urban development decisions. 

 

Keywords: Urban development, InVEST model, Habitat quality, Ecological analysis, Anthropogenic 

threats 

 

1. Introduction 

The establishment and emergence of a city is fundamentally influenced by its geographical setting, 

as natural phenomena play a vital role in urban site selection, sphere of influence, urban 

morphology, and physical expansion (Ganja yean, 2021). Currently, urban populations in 

developing countries are growing at a much faster rate than in developed nations. It is anticipated 

that rural communities will become a relatively small portion of the overall population structure 

in the future (Pour Mohammadi et al., 2009). 

Today, the global agenda focuses on the preservation of natural resources and the pursuit of 

sustainability—an objective that requires the implementation of principles and criteria to guide 

urban development accordingly (Jome pour et al., 2018). Protected areas are essential for 

conserving biodiversity. The fate of many endangered species, the protection of healthy 

ecosystems with high species diversity and ecological richness, and the provision of ecosystem 

services from natural habitats heavily depend on the design and management of these protected 

zones (Saura et al., 2017). The emergence of environmental problems at various scales is often 

rooted in the disregard for ecological criteria in the site selection of new cities. Although improper 

urban configurations may stem from economic, social, historical, and political factors, they have 

also been a primary cause of environmental crises (Shanavar et al., 2016). 

Globally, approximately 15 million hectares of farmland are converted to urban areas or decertified 

annually due to mismanagement. This alarming trend is also evident in Iran, where nearly 1.5 

billion tons of soil are eroded each year, largely due to unsustainable and improper exploitation of 

natural resources (Makhdoom, 1991). Future habitat modeling enables us to recognize existing 

relationships and prevent disruption of ecological balance (Nelson et al., 2008). Geographic 

Information Systems (GIS), with their advanced capabilities in data management and spatial 

analysis, are regarded as effective tools in environmental planning (Karam, 2005). 
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InVEST is a suite of GIS-based models that predict the value of ecosystem services and habitat 

resources using land cover/land use (LC/LU) maps (Polasky, 2011). Given the importance of 

understanding the sensitivity of habitats to various threats, studies have shown that the InVEST 

modeling framework is highly capable of delivering such insights (Mohammad Sarbaz et al., 

2017). 

The Habitat Quality model within the InVEST toolbox provides a robust analytical approach to 

assess habitat quality under human-induced threats such as roads, urban expansion, and high-risk 

land uses. Unlike traditional methods based on subjective scoring, this model integrates land use 

maps, threat factors, and ecological sensitivity classes to produce quantitative and reliable 

assessments of habitat quality (Sharp et al., 2018). 

2. Literature review 

In recent years, many studies have employed this model to evaluate ecological quality and the 

potential for urban development. For instance, Jeong et al. (2024) utilized the Habitat Quality 

model in South Korea to identify conservation priority zones, revealing that high-threat areas 

experienced severe habitat degradation. Similarly, Wang et al. (2022) applied statistical techniques 

such as principal component analysis to structurally determine the sensitivity of land-use classes 

to threats, which were then integrated into the InVEST framework. Zhao et al. (2023), in a study 

on the Yellow River Basin in China, demonstrated that urban expansion patterns had a significant 

impact on habitat quality, and their findings were directly applied in spatial policymaking. 

In Thailand, Bamrungkhul and Tanaka (2023) evaluated land suitability for urban development in 

Nong Khai city. Their results showed that approximately 25% of the area was deemed suitable for 

physical expansion. 

In Iran, Asadi et al. (2020) applied the Habitat Quality model to assess habitat vulnerability in 

Chaharmahal and Bakhtiari province, confirming the model’s effectiveness in ecological 

evaluations. 

Qamsar city, located in Isfahan province, is a prominent example of a region where urban 

development must be approached with heightened environmental sensitivity due to its unique 

geographical location, native vegetation, and economic dependence on natural resources. Given 

https://doi.org/10.48308/ijce.2025.240072.1004


May 2025 

Volume 1 

Issue 1 

 
DOI: 10.48308/ijce.2025.240072.1004 

 

56 

 
 

 

 

 

the mounting anthropogenic pressures, identifying areas that are environmentally suitable for 

development is of paramount importance. In this context, employing the Habitat Quality model in 

such an ecologically sensitive area as Qamsar offers a valuable approach for urban decision-

making with minimal environmental repercussions. Since no comprehensive assessment of habitat 

quality has been previously conducted in Qamsar, this study aims to fill that gap and propose an 

environmentally informed urban site selection model to support sustainable development. 

3. Methodology  

3.1. Study Area 

Qamsar is located approximately 27 kilometers south of Kashan County, forming a valley with an 

estimated dimension of 9 by 5 kilometers. Administratively, Qamsar belongs to Isfahan Province 

and is considered a sub-region of Kashan County (Figure 1). Positioned as the urban and 

administrative center of the Qamsar District, this city lies along the southern mountainous slopes 

of Kashan. 

The Qamsar District consists of 25 inhabited settlements, including two towns—Qamsar and 

Joshqan-Kamoo—and several rural districts such as Ghahrood, Moslemabad, Hoseinabad, 

Ghaza’an, Alzag, and Kalukh. The distance from Qamsar to the provincial capital (Isfahan) is 

approximately 180 kilometers via the Tehran–Kashan–Isfahan highway and about 155 kilometers 

via the Ghahrood–Meymeh–Isfahan route. 

Geographically, this garden city is situated at 33°45’ N latitude and 51°26’ E longitude, covering 

an area of 4,200,542 hectares. According to the national census data, the population of Qamsar 

was reported as 3,667 in 2006 and increased to 3,877 in 2016, indicating a slight upward trend. 

The elevation of the city ranges from a minimum of 1,788 meters to a maximum of 2,004 meters 

above sea level. Due to its relatively high altitude, surrounding mountains, and abundant orchards, 

Qamsar enjoys a moderate climate. However, the dominant climate is classified as cold semi-arid 

in winter and dry-moderate in summer. The average annual minimum temperature is 

approximately 5.5°C, while the average maximum temperature is 21°C. The recorded absolute 

maximum temperature is 37°C, and the absolute minimum is –19°C. 

Based on data from the Natanz meteorological station over a seven-year period, the annual average 

precipitation is 418 mm, and the estimated evapotranspiration is approximately 700 mm. 
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Qamsar’s main river originates from an altitude of about 3,000 meters in the southern highlands 

of Jowrah. It flows through the center of Qamsar at 1,100 meters, traverses toward the Kashan 

plain, and ultimately discharges into the Qom salt marsh (Mesileh). 

According to Iran’s geological structural classification, Qamsar lies within the volcanic-

sedimentary belt of the Central Iranian Zone. This region is primarily composed of Eocene 

volcanic-sedimentary rocks from the Cenozoic era, which rest atop older folded formations. 

Numerous intrusive igneous bodies, both large and small, have penetrated the mountain system 

during the Tertiary period. 

The rosewater (golab) industry holds remarkable significance in Qamsar due to the superior quality 

of its Damask roses. A substantial portion of local agricultural land is dedicated to rose cultivation, 

making Qamsar widely known as the Capital of Rosewater in Iran. Thanks to its unique 

environmental conditions and traditional extraction techniques, Qamsar produces one of the finest 

types of rosewater in terms of essential oil concentration and aroma (Qamsar Municipality, 2025). 

 

Figure 1. Geographical Location of Qamsar City 
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3.2. Materials and Methods 

In this study, the Habitat Quality model from the InVEST software suite (version 3.15.1) was 

used to assess the ecological quality of natural habitats within the boundaries of Qamsar city. 

This model utilizes spatial and ecological data to quantify habitat quality by incorporating 

human-induced threats, aiming to identify areas with potential for urban development that would 

cause minimal environmental degradation. Additionally, ArcGIS Pro version 3.1 was employed 

for the preparation of input layers and spatial data processing. 

3.2.1. Spatial Data Preparation 

Land use/land cover (LULC) maps of the study area were developed using Sentinel-2 imagery 

and the Supervised Classification method in the ArcGIS Pro environment. Six primary land 

cover classes were identified in this classification: (1) water bodies and rivers, (2) highlands and 

rangelands, (3) orchards and agricultural lands, (4) barren lands, (5) rocky terrains, and (6) urban 

areas. Each class was assigned a specific land use code (lucode) to ensure proper compatibility 

with the InVEST model input requirements. (Figure2) 

To extract human-induced threats, three distance-based raster layers were generated in ArcGIS 

Pro using the Euclidean Distance tool. These layers included:  distance from roads (roads.tif) 

(Figure3), distance from rivers (rivers.tif) (Figure4), and distance from service centers 

(services.tif) (Figure5). These rasters served as spatial indicators of anthropogenic pressure in the 

habitat quality assessment. 
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   Figure 2. Land Use/Land Cover Map                                                   Figure 3. Distance from Roads 

                                                                                                               

               Figure 4. Distance from Rivers                                                 Figure 5. Distance from Services 
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3.2.2. Model Table Configuration 

To ensure the successful execution of the Habitat Quality model in the InVEST software, two 

fundamental input tables were developed in CSV format in accordance with the official model 

documentation. These tables play a critical role in defining how land cover types interact with 

anthropogenic threats and form the foundation of the model’s computational framework. 

3.2.2.1. Habitat Sensitivity Table (habitat_sensitivity_table.csv) 

The habitat sensitivity table defines whether each land use/land cover (LULC) class is 

considered a natural habitat. This is expressed as a binary value—1 for habitat and 0 for non-

habitat. Beyond this classification, the table specifies the degree to which each LULC class is 

sensitive to various anthropogenic threats that may degrade habitat quality. In this study, three 

primary threats were considered: proximity to roads, rivers, and service centers. 

Sensitivity values range from 0 (not sensitive) to 1 (highly sensitive). These values are assigned 

independently for each threat and land cover class combination, based on expert knowledge, 

literature review, and local environmental conditions. For instance, agricultural land may be 

highly sensitive to road proximity but less so to rivers, while barren lands might exhibit minimal 

sensitivity to all threats. This table was formatted and labeled according to InVEST’s model 

input specifications and corresponds to Table 1 in the results section. 

3.2.2.2. Threats Table (threats_table.csv) 

The threats table contains detailed parameters for each defined threat that may negatively impact 

habitat quality. Each row in this table includes the following key components: 

• Maximum Effective Distance (max_distance): The furthest extent (in meters) to which the 

threat can influence surrounding land. 

• Weight: A relative indicator of the threat’s intensity or importance compared to other threats. 

• Decay Function (decay): Defines how the impact of the threat decreases with distance. Two 

types are supported: linear, in which the threat decreases evenly, and exponential, where the 

threat drops off more sharply. 

• Affected LULC Classes: A list of land cover classes that are sensitive to this particular 
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threat, indicating where its influence should be calculated. For example, the “roads” threat may 

have a maximum influence distance of 5000 meters, a weight of 1.0, and a linear decay function, 

whereas the “rivers” threat may exert its effect over 3000 meters and follow an exponential 

decay curve. These definitions were encoded into the threats_table.csv file and aligned with the 

modeling structure used in InVEST. This table is also referenced as Table 2 in the results.                                                    

Both tables were created using Microsoft Excel and saved in CSV (Comma-Separated Values) 

format to ensure compatibility with the InVEST software environment. All parameter values 

were defined according to the official model documentation and guidelines provided by the 

Natural Capital Project (Sharp et al., 2018), while also incorporating site-specific adaptations 

relevant to the Qamsar region. 

Table 1. Habitat Sensitivity Table 

 

Table 2. Threats Table 

Threat Name Decay Type Threat Weight Max Distance of Effect 

Euclidean Distance Of roads Linear 1.0 5000 

Euclidean Distance Of rivers Exponential 0.8 3000 

LULC 

Code 

Land Use 

Type 
habitat 

Sensitivity 

To 

Road 

Sensitivity 

To 

Rivers 

Sensitivity To 

Services 

1 Wetlands and Rivers 0 0.5 0.4 0.4 

2 Rangelands and Meadows 1 0.4 0.4 0.3 

3 Farmlands and Agriculture 1 0.6 0.6 0.6 

4 Barren Lands 0 0.2 0.2 0.2 

5 Rock and Desert Areas 0 0.3 0.3 0.3 

6 Urban Areas 0 0 0 0 
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Euclidean Distance Of services Linear 0.6 4000 

 

3.2.3. Running the Habitat Quality Model 

Once all required spatial layers and input tables were properly prepared, the Habitat Quality model 

from the InVEST software package (version 3.15.1) was executed to assess the spatial distribution 

of ecological integrity across Qamsar city. This model is designed to evaluate the quality of habitats 

by integrating land use data with anthropogenic pressures, thereby identifying zones that are either 

ecologically vulnerable or relatively intact. 

The model execution was carried out through the InVEST Workbench interface. Input files—

including the land use/land cover raster (lulc.tif), the habitat sensitivity table 

(habitat_sensitivity_table.csv), and the threats definition table (threats_table.csv)—were uploaded 

into the model form. These inputs had previously been constructed based on scientific rationale 

and locally adapted sensitivity and threat values, as described in earlier sections. 

A key parameter in the model configuration was the half-saturation constant, which was set to 0.5. 

This parameter controls the shape of the response function between cumulative threats and the 

resulting degradation. A value of 0.5 is commonly recommended in the InVEST user 

documentation (Sharp et al., 2018), as it represents a balanced point where the effect of threats 

begins to taper off—allowing for a more realistic and stable simulation of degradation impacts. 

Upon execution, the model processed the spatial data and generated a series of output layers that 

serve as the core analytical results of this study. These outputs included:  

•hab_quality.tif, a raster map assigning habitat quality scores to each cell in the study area based 

on proximity to threats and the land use type. Higher values (closer to 1) indicate better habitat 

conditions with minimal disturbance, while lower values reflect degraded and highly threatened 

zones. 

• hab_degradation.tif, a raster map that quantifies the cumulative impact of defined threats on each 

pixel, regardless of whether the cell is considered habitat or not. 
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• Summary statistics, automatically generated for each land use class, reporting average habitat 

quality and degradation values, which can later be used for class-level comparisons and policy 

recommendations. 

After obtaining these outputs, the results were subjected to further geospatial analysis using 

ArcGIS Pro. This included operations such as: 

Reclassification to simplify interpretation and highlight critical zones for conservation or urban 

intervention. 

This stage of the modeling was crucial not only for visualizing the spatial manifestation of 

ecological degradation but also for extracting actionable insights. The outputs serve as 

foundational evidence for decision making processes related to urban planning, conservation 

prioritization, and ecological risk mitigation in the Qamsar region. 

 

4. Results and discussion 

 The results obtained from the Habitat Quality model in the InVEST software reveal a critical 

ecological condition in the natural habitats of the Qamsar region. The mean habitat quality index 

was calculated at 0.0655, which, on a scale of 0 to 1, indicates a severely degraded ecosystem. 

This low value clearly reflects the intense impact of anthropogenic threats such as urban expansion, 

mechanized agriculture, road construction, and proximity to service centers on the region’s natural 

habitats. 

The habitat quality output map (hab_quality.tif) (Figure6) showed that areas with high ecological 

quality are very limited, scattered, and mainly concentrated in the central and southeastern parts 

of the region, where there is greater distance from destructive elements such as roads, rivers, and 

service facilities. In contrast, the highest levels of degradation were observed in the northwestern 

and western zones, which spatially overlap with the densest urban infrastructure. 

Meanwhile, the habitat degradation map (deg_sum_c.tif) (Figure7), which quantifies the intensity 

of threats, revealed a mean degradation value of 0.4179—relatively high compared to the quality 

index—indicating significant anthropogenic pressure over a large portion of the study area. The 

degradation ranged from 0 to a maximum of 0.60, with the lowest values found in remote areas 
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less exposed to human activity. A simultaneous assessment of both maps demonstrated a strong 

inverse correlation between habitat quality and degradation intensity. Areas classified as “very 

poor” in the quality map corresponded closely to those with the highest degradation values. This 

spatial overlap confirms the accuracy of the model’s threat definitions and sensitivity assignments, 

and supports the structural soundness of the modeling process. 

Moreover, the spatial configuration of the maps revealed clear ecological gradients along the 

borders between high-quality and low-quality zones. Many transitional areas, especially those 

located between preserved natural zones and urbanized districts, displayed moderate levels of 

degradation—suggesting an advancing front of habitat loss. This emphasizes the need for buffer 

zones and preventive planning around ecologically valuable areas. 

                        

    Figure 6. Natural Habitat Quality Map                                      Figure 7. Habitat Destruction Map 

5. Policy and Conclusion 

The use of the Habitat Quality model in InVEST provided a comprehensive and spatially explicit 

assessment of the ecological status in the Qamsar region. The findings indicate that a significant 

portion of the region’s natural habitats are in a critical state, facing widespread degradation. The 
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extremely low mean habitat quality value (0.0655), alongside a high average degradation index 

(0.4179), underscores the urgent need for conservation-focused interventions and a reassessment 

of current development strategies. 

The model’s spatial outputs enabled the identification of priority zones for intervention. The 

northwestern and western areas, closely associated with dense infrastructure and urban sprawl, 

emerged as key targets for control and mitigation. Conversely, the central and southeastern parts, 

with relatively higher habitat quality, should be prioritized for ecological protection and continuous 

monitoring to prevent further encroachment. 

Based on spatial analysis, areas with low habitat quality and high degradation can be considered 

suitable candidates for future urban development, given their low conservation value. In contrast, 

areas with high ecological quality must be safeguarded as ecological reserves, with all human 

expansion strictly avoided. 

The study also demonstrates that the Habitat Quality model is not only effective for current 

ecological assessment but also serves as a powerful tool in urban and regional planning. By 

integrating spatial data on land use, threat proximity, and habitat sensitivity, the model provides 

critical insights for policymakers, urban planners, and sustainability professionals. 

Recommendations for Future Studies: 

1.Temporal analysis: Conducting multi-temporal assessments to monitor ecological dynamics and 

long-term habitat changes. 

2.Refinement of threat layers: Incorporating additional threats such as noise pollution, heavy 

traffic, soil erosion, and industrial activity to enhance model precision. 

3.Field validation: Comparing model outputs with field-collected ecological data or high-

resolution satellite imagery to verify spatial accuracy. 

4.Policy integration: Applying model results to inform land-use planning, urban zoning, permit 

issuance, and biodiversity conservation strategies. 

In conclusion, this study underscores the value of data-driven spatial models such as InVEST in 

achieving sustainable and balanced development. Areas with low ecological value may be 

considered for controlled development, while high-value zones should be conserved as critical 
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biodiversity assets. The application of such models can guide evidence-based policies that 

harmonize urban growth with environmental integrity. 
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Abstract: 

Land use change detection is critical for sustainable environmental management, yet uncertainties 

from noise, mixed pixels, and spectral similarities challenge its accuracy. This study conducts a 

comparative analysis of classical machine learning methods—Support Vector Machines, Random 

Forests, and Maximum Likelihood classifiers—and modern approaches, specifically 

Convolutional Neural Networks and Bayesian Neural Networks, to evaluate their efficacy in 

managing uncertainty across urban, agricultural, and aquatic contexts. Utilizing global and Iranian 

case studies, the research assesses performance metrics, including accuracy, uncertainty 

management, and computational complexity, through quantitative and qualitative syntheses. 

Findings reveal that modern methods outperform classical approaches, with Convolutional Neural 

Networks achieving 90–95% accuracy and Bayesian Neural Networks reaching 91.85% in urban 

settings, driven by robust feature extraction and probabilistic uncertainty quantification. Classical 

methods, while less accurate (65–92%), offer computational efficiency, making them viable in 

resource-constrained regions. The study highlights practical implications for Iran’s urban and 

agricultural monitoring and global sustainability goals, proposing hybrid approaches and multi-

modal data integration to balance accuracy and accessibility. Despite their potential, challenges 

such as computational intensity, data scarcity, and model interpretability persist, necessitating 

future research into lightweight algorithms, semi-supervised learning, and explainable artificial 

intelligence. This analysis advances the field by providing a framework for method selection, 

enhancing the reliability of land use change detection for environmental policy and resource 

management. 

 

Keywords: Land use change detection, machine learning, uncertainty management, hybrid 

approaches, multi-modal data integration 
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1.Introduction 

Land use change detection plays an essential role in monitoring and managing the Earth's dynamic 

landscapes, offering critical insights into processes such as deforestation, urban sprawl, and 

agricultural development. These changes have profound implications for sustainable resource 

management and environmental conservation, enabling stakeholders to address challenges like 

biodiversity loss and climate change (Turner et al., 2007). Central to this field is the use of satellite 

imagery, which provides extensive, repeatable data over vast geographic areas. However, the 

reliability of land use change detection is often undermined by uncertainty—a multifaceted issue 

inherent in remote sensing data that arises from factors such as sensor limitations, atmospheric 

interference, and algorithmic imperfections (Foody, 2010). Effectively managing this uncertainty 

is vital to ensuring accurate analyses and supporting sound environmental decision-making. 

In the context of remote sensing, uncertainty refers to the degree of doubt surrounding the accuracy 

or validity of derived information, such as land cover classifications. Sources of uncertainty 

include sensor noise, which may distort pixel values; atmospheric conditions like cloud cover, 

which can obscure features; and errors in data processing, such as misclassification of complex or 

transitional land cover types (Olofsson et al., 2014). These challenges are particularly acute in 

heterogeneous landscapes, where subtle differences between classes—like urban and peri-urban 

zones—can lead to significant errors. When unaddressed, uncertainty propagates through models 

and maps, potentially skewing policy decisions or resource management strategies. As satellite 

data grows in volume and complexity, the need for robust methods to mitigate these issues becomes 

increasingly urgent. 

Machine learning (ML) has emerged as a transformative tool for interpreting satellite imagery and 

tackling uncertainty in land use change detection. Classical ML techniques, such as Support Vector 

Machines (SVM), Random Forests (RF), and Maximum Likelihood classifiers, have long been 

employed for their ability to process multidimensional data and deliver reliable results in 

controlled settings (Huang et al., 2002). Yet, these methods often falter when confronted with noisy 

or ambiguous datasets. In contrast, modern ML approaches—such as Convolutional Neural 

Networks (CNNs) and Bayesian models—offer advanced capabilities, including the extraction of 

spatial patterns and probabilistic uncertainty estimation (Ma et al., 2019; Chen et al., 2020). These 

innovations hold promise for improving classification accuracy and resilience against real-world 

data challenges. 

This study seeks to compare classical and modern ML approaches in managing uncertainty within 

land use change detection. By analyzing their performance across diverse contexts—spanning 

urban, agricultural, and natural landscapes—we aim to determine which methods best enhance the 

precision and reliability of remote sensing outputs. The research not only contributes to the 

evolution of ML applications in environmental science but also has practical implications for 

policymakers and practitioners who rely on accurate land use data to address global sustainability 

challenges. 

2. Literature Review 
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Land use change detection is a cornerstone of environmental science, enabling researchers and 

policymakers to monitor transformations in the Earth's surface, such as deforestation, urban 

expansion, and shifts in agricultural practices. These changes have profound implications for 

biodiversity, climate regulation, and sustainable resource management, making accurate detection 

critical for informed decision-making (Turner et al., 2007). Satellite imagery, provided by 

platforms like Landsat and Sentinel, offers extensive spatial and temporal data, facilitating the 

analysis of land use dynamics. However, the reliability of these analyses is often compromised by 

uncertainties arising from sensor limitations, atmospheric conditions, and algorithmic 

imperfections (Foody, 2010). The application of machine learning (ML) has transformed land use 

change detection, offering tools to mitigate these uncertainties. This review explores the evolution 

of ML approaches, from classical methods like Support Vector Machines (SVM), Random Forests 

(RF), and Maximum Likelihood classifiers to modern techniques such as Convolutional Neural 

Networks (CNNs) and Bayesian models, assessing their strengths, limitations, and contributions 

to managing uncertainty. 

The significance of land use change detection lies in its ability to inform sustainable development 

and environmental conservation. Turner et al. (2007) argue that land change science integrates 

remote sensing with ecological and social perspectives, providing a holistic understanding of 

global environmental challenges. Satellite imagery has become indispensable due to its ability to 

capture large-scale changes over time, but its effectiveness depends on overcoming uncertainties 

that undermine classification accuracy. Foody (2010) identifies key sources of uncertainty, 

including sensor noise, which distorts pixel values; atmospheric interference, such as clouds and 

aerosols; and imperfect ground reference data, which complicates validation. Olofsson et al. (2014) 

emphasize the need for robust sampling designs and error matrices to quantify uncertainty, noting 

that mixed pixels—where a single pixel encompasses multiple land cover types—pose significant 

challenges, particularly in heterogeneous landscapes. These issues can propagate through models, 

skewing results and affecting policy decisions. As the volume and complexity of satellite data 

increase, advanced ML methods have become essential for addressing these challenges. 

Classical ML methods have historically dominated land use change detection, offering automated 

and reliable solutions for classifying satellite imagery. Support Vector Machines, introduced as a 

powerful supervised learning algorithm, excel in high-dimensional spaces by finding the optimal 

hyperplane to separate classes (Huang et al., 2002). Huang et al. (2002) demonstrated SVM’s 

superior accuracy over traditional classifiers for land cover classification using Landsat imagery, 

particularly in complex landscapes. In an Iranian context, Rezaei et al. (2021) combined SVM with 

a binary gravitational search algorithm to classify polarimetric radar images, achieving high 

accuracy in urban settings. However, they noted SVM’s sensitivity to noise and parameter 

selection, which can degrade performance in datasets with significant distortions. Random Forests, 

an ensemble method of decision trees, are renowned for their robustness and ability to handle 

heterogeneous data (Thanh Noi & Kappas, 2018). Thanh Noi and Kappas (2018) compared RF 

with SVM and k-Nearest Neighbor for Sentinel-2 imagery, finding that RF performs consistently 

across parameter settings, making it accessible to users with varying expertise. Tikuye et al. (2023) 

applied RF to detect land use changes in Ethiopia’s Upper Blue Nile River Basin, confirming its 

effectiveness in diverse environmental conditions. Despite these strengths, RF’s computational 

intensity can be a barrier when processing large datasets. 
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Maximum Likelihood classifiers, rooted in Bayesian probability, assign pixels to classes based on 

statistical likelihood, assuming a multivariate normal distribution (Akhbari et al., 2006). Akhbari 

et al. (2006) highlighted the simplicity and efficiency of this method for satellite image 

classification, making it suitable for straightforward applications. However, Yousefi et al. (2011) 

evaluated its performance in Noor County, Iran, finding that while it excels with distinct classes 

like water and forest, it struggles with spectrally similar classes, such as urban and bare soil, due 

to its reliance on normality assumptions. Ahmadpour et al. (2014) compared supervised 

classification methods for vegetation cover in Iran, underscoring that method choice significantly 

influences accuracy, particularly in noisy conditions. Classical methods, while foundational, often 

rely on manually engineered features, limiting their ability to capture the full complexity of 

satellite imagery (Foody, 2010). Moreover, they lack inherent mechanisms for quantifying 

uncertainty, which restricts their ability to provide confidence measures in predictions (Olofsson 

et al., 2014). 

The limitations of classical methods have spurred the adoption of modern ML approaches, 

particularly deep learning and Bayesian techniques, which offer advanced capabilities for handling 

uncertainty and complex data. Convolutional Neural Networks, a subset of deep learning, process 

grid-like data through convolution and pooling layers, automatically learning hierarchical features 

from images (Ma et al., 2019). Ma et al. (2019) conducted a meta-analysis of deep learning in 

remote sensing, noting the rapid adoption of CNNs for land cover classification and change 

detection due to their high accuracy and ability to eliminate manual feature engineering. In Iran, 

Momeni et al. (2020) proposed a CNN-based model with dynamic fusion for classifying noisy 

images, demonstrating significant improvements over classical methods. Cao et al. (2019) applied 

CNNs to detect land use changes, achieving high accuracy and highlighting their potential for 

automation in deforestation monitoring. These advancements reflect CNNs’ ability to extract 

spatial patterns and mitigate noise, making them well-suited for complex datasets. 

Bayesian methods provide a probabilistic framework for modeling uncertainty, enhancing the 

reliability of land use change detection. Chen et al. (2020) employed Bayesian Neural Networks 

(BNNs) for land cover classification, achieving a precision of 91.85% and effectively identifying 

areas with high uncertainty. This capability is particularly valuable in heterogeneous landscapes 

where confidence in predictions is critical. Gal and Ghahramani (2016) introduced Dropout as a 

Bayesian approximation, offering a computationally efficient method to estimate uncertainty in 

deep learning models. This technique has been widely adopted, improving the stability and 

transparency of predictions in uncertain environments. Bayesian approaches, by providing 

probability distributions over predictions, address a key limitation of classical methods, which 

typically offer deterministic outputs without uncertainty estimates. 

Comparative studies offer valuable insights into the performance of classical and modern methods 

across diverse contexts. Thanh Noi and Kappas (2018) found that RF and SVM achieved 

comparable accuracy for Sentinel-2 data, with RF being less sensitive to parameter tuning. Yousefi 

et al. (2011) evaluated multiple algorithms in Iran, noting trade-offs in performance depending on 

class complexity. Ahmadpour et al. (2014) emphasized the context-specific nature of method 

efficacy in vegetation studies. Globally, Tikuye et al. (2023) demonstrated RF’s effectiveness in 

Ethiopia, while Cao et al. (2019) showcased CNNs’ superior performance in deforestation 

detection. Chen et al. (2020) highlighted BNNs’ strength in uncertainty quantification, offering a 
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contrast to classical methods’ deterministic outputs. These studies underscore the importance of 

selecting methods based on data characteristics and environmental conditions. 

The evolution of ML in land use change detection reflects a progression from simple classifiers to 

sophisticated models. Early methods, such as Parallelepiped and Minimum Distance, were limited 

in handling complex data (Yousefi et al., 2011). The introduction of SVM and RF marked 

significant advancements, addressing high-dimensional and non-linear problems (Huang et al., 

2002; Thanh Noi & Kappas, 2018). Deep learning, particularly CNNs, has revolutionized the field 

by automating feature extraction (Ma et al., 2019), while Bayesian approaches have enhanced 

uncertainty quantification (Chen et al., 2020; Gal & Ghahramani, 2016). However, challenges 

persist, including the computational demands of deep learning models and their reliance on large, 

labeled datasets (Ma et al., 2019). Classical methods, while less resource-intensive, lack the 

sophistication to handle uncertainty effectively (Foody, 2010). 

Future research should focus on addressing these challenges through innovative approaches. 

Hybrid models combining classical feature extraction with modern classification could balance 

efficiency and accuracy. Lightweight algorithms, designed for real-time applications, would 

benefit regions with limited computational resources. Semi-supervised learning could reduce 

dependence on labeled data, addressing data scarcity in developing countries (Ma et al., 2019). 

Integrating multi-modal data, such as optical and radar imagery, could further enhance accuracy 

and reduce uncertainty by leveraging complementary information (Ma et al., 2019). Additionally, 

improving model interpretability is critical for building trust in ML applications, particularly in 

policy-relevant contexts where transparency is paramount. 

In conclusion, the literature reveals a dynamic field where classical ML methods laid the 

foundation for land use change detection, but modern approaches offer superior performance in 

managing uncertainty and processing complex data. Classical methods like SVM, RF, and 

Maximum Likelihood remain relevant in resource-constrained settings, but their limitations in 

noisy or heterogeneous environments highlight the need for advanced techniques. CNNs and 

Bayesian models have transformed the field by providing robust tools for feature extraction and 

uncertainty quantification, though their adoption is constrained by computational and data 

requirements. Comparative studies and case studies underscore the context-specific nature of 

method performance, emphasizing the need for tailored approaches. Continued research into 

hybrid models, lightweight algorithms, and multi-modal data integration will further advance the 

field, enabling more accurate and reliable land use change detection for sustainable environmental 

management. 

3. Methodology 

This study employs a descriptive and analytical review approach to evaluate the performance of 

classical and modern machine learning (ML) methods in managing uncertainty during land use 

change detection using satellite imagery. The primary objective is to compare the efficacy of 

classical methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum 

Likelihood classifiers—with modern approaches, specifically Convolutional Neural Networks 

(CNNs) and Bayesian models, in addressing uncertainties arising from sensor noise, atmospheric 

conditions, and data complexity. By synthesizing findings from global and Iranian case studies, 
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this research aims to provide a comprehensive framework for selecting appropriate ML methods 

based on their accuracy, uncertainty management capabilities, and computational requirements. 

3.1. Data Sources and Collection 

The data for this review were gathered through a systematic literature search covering publications 

from 2002 to 2023, ensuring a broad temporal scope to capture the evolution of ML methods in 

land use change detection. Relevant studies were sourced from reputable databases, including 

Springer, Elsevier, IEEE, and Civilica, which provided access to peer-reviewed articles and 

conference proceedings in remote sensing and ML. The search focused on studies utilizing satellite 

imagery, such as Landsat and Sentinel, for land use change detection, with an emphasis on 

uncertainty management. Keywords included “land use change detection,” “remote sensing,” 

“machine learning,” “uncertainty,” and specific method names (e.g., SVM, CNN, Bayesian). 

Additional Iranian studies were included to contextualize findings within a regional framework, 

addressing local environmental challenges like urban expansion and agricultural shifts (Rezaei et 

al., 2021; Momeni et al., 2020). 

Inclusion criteria required studies to focus on land use change detection, employ satellite imagery, 

and explicitly address uncertainty or ML performance metrics, such as accuracy or robustness to 

noise. Both theoretical and applied studies were considered, ensuring a balance between 

methodological advancements and practical applications. A total of 14 key references were 

selected, encompassing global perspectives (e.g., Chen et al., 2020; Ma et al., 2019) and Iranian 

case studies (e.g., Yousefi et al., 2011; Ahmadpour et al., 2014). These studies provided a robust 

foundation for comparing classical and modern ML methods across diverse environmental 

settings, including urban, agricultural, and aquatic landscapes. 

3.2. Analytical Approach 

The methodology adopted a comparative analysis framework, evaluating classical and modern ML 

methods based on three primary criteria: overall accuracy, ability to manage uncertainty, and 

computational complexity. Overall accuracy was assessed using metrics like classification 

accuracy, F1 scores, and error rates reported in the reviewed studies. Uncertainty management was 

evaluated by examining each method’s capacity to handle noise (e.g., atmospheric interference, 

sensor limitations) and provide confidence measures, such as probability distributions in Bayesian 

models (Gal & Ghahramani, 2016). Computational complexity was analyzed in terms of 

processing time, resource requirements, and scalability, particularly for large-scale satellite 

datasets. 

Classical methods included SVM, RF, and Maximum Likelihood classifiers, which rely on 

statistical or ensemble-based approaches to classify imagery (Huang et al., 2002; Thanh Noi & 

Kappas, 2018; Akhbari et al., 2006). Modern methods encompassed CNNs, which leverage deep 

learning for automated feature extraction, and Bayesian models, which quantify uncertainty 

through probabilistic frameworks (Ma et al., 2019; Chen et al., 2020). Each method was analyzed 

descriptively, drawing on case studies to highlight performance in real-world scenarios. For 

instance, urban applications in Iran (Rezaei et al., 2021) and agricultural monitoring in Ethiopia 

(Tikuye et al., 2023) provided context-specific insights. 

3.3. Case Study Analysis 
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To ensure practical relevance, the review incorporated case studies from Iran and worldwide, 

reflecting diverse environmental and data conditions. Iranian studies focused on urban 

classification using polarimetric radar (Rezaei et al., 2021), vegetation cover analysis (Ahmadpour 

et al., 2014), and land use mapping in Noor County (Yousefi et al., 2011). Global studies included 

deforestation detection (Cao et al., 2019), land cover classification with high-resolution imagery 

(Chen et al., 2020), and Sentinel-2-based analyses (Thanh Noi & Kappas, 2018). These case 

studies were selected to represent varied landscapes—urban, agricultural, and aquatic—where 

uncertainty factors like cloud cover, mixed pixels, and spectral similarity are prevalent (Foody, 

2010; Olofsson et al., 2014). 

Each case study was evaluated to assess how ML methods performed under specific uncertainty 

challenges. For example, SVM’s sensitivity to noise was examined in urban settings with building 

shadows (Rezaei et al., 2021), while CNNs’ robustness to noise was tested in agricultural 

monitoring with multi-source data (Cao et al., 2019). Bayesian models’ uncertainty quantification 

was analyzed in high-resolution classification tasks (Chen et al., 2020). This approach allowed for 

a nuanced comparison of method performance across different data types and environmental 

conditions. 

3.4. Data Synthesis and Evaluation 

Data synthesis involved a qualitative comparison of ML methods, summarizing their advantages, 

limitations, and uncertainty management capabilities. A table was constructed (adapted from the 

original document) to present key metrics—accuracy, uncertainty handling, advantages, 

limitations, and application domains—drawing on findings from the reviewed studies. For 

instance, SVM’s moderate accuracy in urban settings was contrasted with CNNs’ high accuracy in 

noisy datasets (Ma et al., 2019; Rezaei et al., 2021). Quantitative metrics, such as the 91.85% 

precision reported for Bayesian Neural Networks (Chen et al., 2020), were highlighted to 

underscore modern methods’ strengths. 

To enhance scientific rigor, the analysis considered contextual factors influencing method 

performance, such as data quality, spatial resolution, and computational infrastructure. The review 

also explored the potential of hybrid approaches, combining classical and modern methods, to 

balance accuracy and resource efficiency, as suggested by Ma et al. (2019). This synthesis provided 

a comprehensive basis for identifying best practices and informing future research directions. 

3.5. Limitations of the Methodology 

While the review approach ensured a broad and systematic analysis, certain limitations must be 

acknowledged. The reliance on secondary data from published studies introduced variability in 

reported metrics, as experimental conditions differed across studies (Olofsson et al., 2014). 

Additionally, the focus on English and Persian-language publications may have excluded relevant 

research in other languages. Finally, the qualitative nature of the comparison limited the ability to 

perform statistical meta-analyses, though this was mitigated by selecting high-quality, peer-

reviewed sources. 

This methodology provides a robust framework for comparing classical and modern ML methods 

in land use change detection, offering insights into their uncertainty management capabilities and 

practical applicability. The systematic integration of global and Iranian case studies ensures 
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relevance to diverse environmental contexts, while the analytical criteria provide a clear basis for 

evaluating method performance. 

4. Results and discussion 

comparative analysis of classical and modern machine learning (ML) methods for land use change 

detection provides a detailed understanding of their performance in managing uncertainty, a critical 

challenge in remote sensing applications. This study evaluated classical methods—Support Vector 

Machines (SVM), Random Forests (RF), and Maximum Likelihood classifiers—against modern 

approaches, specifically Convolutional Neural Networks (CNNs) and Bayesian Neural Networks 

(BNNs), using criteria of overall accuracy, uncertainty management, and computational 

complexity. Drawing on a systematic review of literature from 2002 to 2023, including global and 

Iranian case studies, the findings reveal distinct strengths and limitations across methods, with 

implications for environmental monitoring and sustainable resource management. This section 

synthesizes these results, beginning with the performance of classical methods, followed by 

modern approaches, a comparative analysis, and a discussion of broader implications and future 

directions. 

Classical ML methods have historically been the backbone of land use change detection, offering 

automated classification of satellite imagery with varying degrees of success. These methods, 

rooted in statistical and ensemble-based techniques, perform adequately in controlled settings with 

high-quality data but often struggle with the complexities and uncertainties inherent in real-world 

datasets (Foody, 2010). In urban environments, SVM has demonstrated moderate to high accuracy, 

leveraging its ability to separate complex classes in high-dimensional spaces (Huang et al., 2002). 

Rezaei et al. (2021) applied SVM combined with a binary gravitational search algorithm to classify 

polarimetric radar images in Iranian urban settings, achieving reliable identification of land use 

patterns. However, the study noted significant reductions in accuracy due to noise from building 

shadows and sensor limitations, highlighting SVM’s sensitivity to data quality and parameter 

tuning (Rezaei et al., 2021). This sensitivity underscores a key limitation: SVM’s performance 

degrades in the presence of atmospheric noise or mixed pixels, common in heterogeneous urban 

landscapes (Olofsson et al., 2014). 

Random Forests, an ensemble method, offer greater robustness by aggregating multiple decision 

trees, making them less susceptible to overfitting and data heterogeneity (Thanh Noi & Kappas, 

2018). Thanh Noi and Kappas (2018) compared RF with SVM and k-Nearest Neighbor for 

Sentinel-2 imagery, finding that RF achieved high accuracy in urban land cover classification, with 

consistent performance across parameter settings. This stability was further evidenced in 

Ethiopia’s Upper Blue Nile River Basin, where Tikuye et al. (2023) utilized RF to detect land use 

changes, reporting reliable results in mapping agricultural and forested areas. However, RF’s 

computational complexity poses challenges for large-scale applications, as processing extensive 

satellite datasets requires significant time and resources. Yousefi et al. (2011) observed similar 

constraints in Iran’s Zayandehroud Basin, where RF’s accuracy in aquatic and agricultural land 

use mapping was compromised by cloud cover and topographic variations, reducing its 

effectiveness in noisy conditions. 

Maximum Likelihood classifiers, which assign pixels to classes based on statistical likelihood, are 

valued for their simplicity and low data requirements (Akhbari et al., 2006). Ahmadpour et al. 
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(2014) evaluated this method in Iran’s central plains for vegetation cover analysis, finding 

moderate accuracy in distinguishing croplands from natural vegetation. However, the method 

struggled to differentiate spectrally similar crops, particularly under atmospheric noise, due to its 

reliance on multivariate normal distribution assumptions. Yousefi et al. (2011) reported 

comparable limitations in Noor County, Iran, where Maximum Likelihood classifiers performed 

adequately for distinct classes like water bodies but failed to resolve ambiguities in urban and bare 

soil classes. These findings align with Foody (2010), who noted that classical methods’ 

dependence on manually engineered features and statistical assumptions limits their ability to 

manage uncertainty in complex or noisy datasets. 

The performance of classical methods in these case studies highlights their utility in resource-

constrained settings or simpler scenarios but also reveals significant shortcomings. Their limited 

capacity to handle noise, such as cloud cover or sensor distortions, and lack of inherent uncertainty 

quantification mechanisms restrict their applicability in modern, high-resolution satellite imagery 

applications (Olofsson et al., 2014). These limitations set the stage for evaluating modern ML 

methods, which promise enhanced accuracy and uncertainty management, as discussed in the 

subsequent sections. 

The superior performance of modern machine learning (ML) methods, particularly Convolutional 

Neural Networks (CNNs) and Bayesian Neural Networks (BNNs), in managing uncertainty marks 

a significant advancement over classical approaches in land use change detection. These methods 

leverage deep learning and probabilistic frameworks to address challenges such as sensor noise, 

atmospheric interference, and spectral ambiguity, which often undermine the reliability of satellite 

imagery analyses (Foody, 2010). By automatically extracting complex spatial features and 

quantifying uncertainty, CNNs and BNNs achieve higher accuracy and robustness, particularly in 

heterogeneous and noisy datasets. This section examines their performance across urban, 

agricultural, and aquatic contexts, drawing on global and Iranian case studies to highlight their 

strengths, supported by quantitative metrics and practical implications. 

Convolutional Neural Networks have transformed land use change detection by automating feature 

extraction through hierarchical layers of convolution and pooling, eliminating the need for manual 

feature engineering (Ma et al., 2019). In urban settings, CNNs demonstrate exceptional resilience 

to noise, such as building shadows and atmospheric distortions, which often confound classical 

methods like SVM (Rezaei et al., 2021). Momeni et al. (2020) developed a CNN-based model with 

dynamic adaptive fusion for classifying noisy images in Iran, achieving significantly higher 

accuracy than classical methods. Their model effectively mitigated noise from urban 

infrastructure, accurately distinguishing between residential, commercial, and industrial zones. 

Globally, Ma et al. (2019) conducted a meta-analysis of deep learning applications, reporting that 

CNNs consistently outperformed RF and SVM in urban land cover classification, with accuracy 

improvements of up to 10% in high-resolution datasets. This robustness stems from CNNs’ ability 

to learn spatial patterns, enabling precise identification of complex urban land use transitions. 

In agricultural contexts, CNNs excel at processing multi-source data, integrating optical and radar 

imagery to overcome uncertainties like cloud cover and spectral similarity between crops (Cao et 

al., 2019). Cao et al. (2019) applied CNNs to detect deforestation and agricultural expansion, 

reporting an F1 score of 0.89, significantly higher than RF’s 0.82 in similar conditions. Their study 

highlighted CNNs’ capacity to fuse temporal and spectral data, improving the detection of subtle 
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changes, such as crop rotation or land degradation. In Iran, Ahmadpour et al. (2014) noted 

challenges with classical methods in distinguishing spectrally similar crops, a problem CNNs 

address through deep feature extraction. Ma et al. (2019) further demonstrated CNNs’ 

effectiveness in agricultural monitoring, achieving high accuracy in detecting land use changes in 

central Asian farmlands, where seasonal variations and cloud cover posed significant challenges. 

Bayesian Neural Networks offer a probabilistic approach to uncertainty management, providing 

confidence measures that enhance prediction reliability in complex landscapes (Chen et al., 2020). 

Chen et al. (2020) employed BNNs for land cover classification using high-resolution imagery, 

achieving an impressive 91.85% accuracy and identifying areas of high uncertainty, such as 

transitional zones between urban and peri-urban areas. This capability is critical for applications 

requiring high confidence, such as urban planning and environmental policy. In aquatic settings, 

BNNs proved effective in mitigating uncertainties from cloud cover and water surface reflections. 

Ma et al. (2019) reported that BNNs, combined with multi-modal data, reduced classification 

errors in wetland mapping by 15% compared to RF, highlighting their stability in noisy conditions. 

Gal and Ghahramani (2016) introduced Dropout as a Bayesian approximation, enabling CNNs to 

estimate uncertainty without significant computational overhead. This technique stabilized 

predictions in Iranian aquatic studies, where Yousefi et al. (2011) noted classical methods’ 

struggles with cloud-induced noise in the Zayandehroud Basin. 

Quantitative metrics underscore modern methods’ superiority. Momeni et al. (2020) reported a 

classification accuracy of 92% for CNNs in noisy urban datasets, compared to 85% for SVM. Cao 

et al. (2019) achieved a precision of 90% in agricultural change detection, surpassing RF’s 83%. 

Chen et al. (2020) highlighted BNNs’ ability to maintain high accuracy (91.85%) while providing 

uncertainty estimates, a feature absent in classical methods (Olofsson et al., 2014). These metrics 

demonstrate modern methods’ capacity to handle uncertainty, making them ideal for complex, 

high-resolution satellite imagery. 

Despite their advantages, modern methods face challenges, including high computational demands 

and reliance on large, labeled datasets (Ma et al., 2019). These limitations are particularly relevant 

in resource-constrained regions like parts of Iran, where access to advanced infrastructure is 

limited. Nevertheless, the case studies illustrate that CNNs and BNNs significantly enhance land 

use change detection, offering robust solutions for managing uncertainty in diverse environmental 

contexts. 

The comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection reveals stark contrasts in their ability to manage uncertainty, achieve high 

accuracy, and handle computational demands across diverse environmental contexts. Classical 

methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood 

classifiers—offer simplicity and accessibility but are often limited by their sensitivity to noise and 

lack of uncertainty quantification. In contrast, modern methods, specifically Convolutional Neural 

Networks (CNNs) and Bayesian Neural Networks (BNNs), leverage deep learning and 

probabilistic frameworks to deliver superior performance in complex, noisy datasets. This section 

synthesizes findings from global and Iranian case studies, highlighting performance differences, 

trade-offs, and the contextual factors influencing method efficacy, setting the stage for a 

comprehensive table and figure in the subsequent discussion. 
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Classical methods demonstrate moderate to high accuracy in controlled settings but falter in 

scenarios with significant uncertainty. SVM, for instance, excels in urban classification when data 

quality is high, as shown by Rezaei et al. (2021), who reported reliable results for polarimetric 

radar imagery in Iran. However, its performance degrades in the presence of noise, such as building 

shadows or atmospheric interference, due to its reliance on manually tuned parameters (Huang et 

al., 2002). RF offers greater robustness through ensemble learning, achieving high accuracy in 

urban and agricultural settings (Thanh Noi & Kappas, 2018; Tikuye et al., 2023). Yet, its 

computational intensity limits scalability, particularly for large Sentinel-2 datasets, as noted in 

Ethiopia’s Upper Blue Nile River Basin (Tikuye et al., 2023). Maximum Likelihood classifiers, 

valued for their simplicity, perform adequately in straightforward applications, such as vegetation 

mapping in Iran’s central plains (Ahmadpour et al., 2014). However, their dependence on 

normality assumptions renders them ineffective for spectrally similar or noisy data, as observed in 

aquatic mapping in the Zayandehroud Basin (Yousefi et al., 2011). 

Modern methods, conversely, consistently outperform classical approaches in managing 

uncertainty and achieving high accuracy. CNNs, with their ability to extract hierarchical spatial 

features, excel in noisy and heterogeneous environments. Momeni et al. (2020) demonstrated that 

CNNs achieved 92% accuracy in classifying noisy urban images in Iran, compared to SVM’s 85%, 

by mitigating distortions from urban infrastructure. In agricultural contexts, Cao et al. (2019) 

reported an F1 score of 0.89 for CNN-based deforestation detection, surpassing RF’s 0.82, due to 

their capacity to integrate multi-source data and handle spectral variability. BNNs further enhance 

performance by providing probabilistic uncertainty estimates, critical for high-stakes applications. 

Chen et al. (2020) achieved 91.85% accuracy in land cover classification, identifying high-

uncertainty areas like transitional zones, a capability absent in classical methods (Olofsson et al., 

2014). Gal and Ghahramani (2016) showed that Dropout, a Bayesian approximation, stabilizes 

CNN predictions, improving reliability in aquatic settings with cloud-induced noise (Ma et al., 

2019). 

The performance gap between classical and modern methods is most pronounced in complex 

scenarios. Classical methods’ reliance on engineered features limits their adaptability to high-

resolution, multi-modal datasets, as noted by Foody (2010). Their deterministic outputs provide 

no insight into prediction confidence, reducing their utility in policy-relevant applications 

(Olofsson et al., 2014). Modern methods, however, leverage automated feature extraction and 

probabilistic modeling to address these shortcomings, making them ideal for modern satellite 

imagery like Sentinel-2 and Landsat (Ma et al., 2019). For example, CNNs’ ability to fuse optical 

and radar data reduces uncertainty from cloud cover, as demonstrated in wetland mapping (Ma et 

al., 2019), while BNNs’ uncertainty estimates enhance transparency in urban planning (Chen et 

al., 2020). 

Trade-offs between methods are significant. Classical methods are computationally efficient and 

require less data, making them suitable for resource-constrained regions like parts of Iran (Yousefi 

et al., 2011). However, their lower accuracy and poor uncertainty management limit their 

scalability. Modern methods, while superior in performance, demand substantial computational 

resources and large, labeled datasets, posing challenges in developing countries (Ma et al., 2019). 

Contextual factors, such as data quality, spatial resolution, and environmental complexity, further 

influence method choice. For instance, RF’s stability in heterogeneous data makes it viable for 
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agricultural monitoring in Ethiopia (Tikuye et al., 2023), while CNNs’ noise resilience is critical 

for urban Iran (Momeni et al., 2020). 

These findings suggest that no single method is universally optimal; rather, method selection 

should be context-driven, balancing accuracy, uncertainty management, and resource availability. 

The potential of hybrid approaches, combining classical simplicity with modern robustness, 

emerges as a promising solution, as discussed by Ma et al. (2019). The following section presents 

a table and proposed figure to visually and quantitatively summarize these comparisons, 

facilitating a deeper understanding of method performance. 

4.1. Quantitative Comparison of Machine Learning Methods 

The systematic evaluation of machine learning (ML) methodologies for land use change detection 

necessitates a rigorous quantitative synthesis to elucidate their comparative efficacy in addressing 

uncertainty, a paramount challenge in remote sensing applications. This section presents two 

meticulously constructed tables to provide a comprehensive analysis of classical and modern ML 

methods—namely Support Vector Machines (SVM), Random Forests (RF), Maximum Likelihood 

classifiers, Convolutional Neural Networks (CNNs), and Bayesian Neural Networks (BNNs). The 

first table encapsulates performance across accuracy, uncertainty management, computational 

complexity, advantages, limitations, and application domains, synthesizing findings from a 

systematic review of global and Iranian studies spanning 2002 to 2023. The second table examines 

the methods’ effectiveness in mitigating specific uncertainty factors—atmospheric noise, mixed 

pixels, and spectral similarity—across urban, agricultural, and aquatic contexts. Each table 

includes a reference column to anchor metrics to their source studies, ensuring scholarly 

transparency. Together, these tables offer an evidence-based framework for discerning method 

strengths and limitations, facilitating informed selection for environmental monitoring and 

sustainable land management. 

Table 1 consolidates performance metrics, integrating quantitative and qualitative insights from 

case studies (Cao et al., 2019; Chen et al., 2020; Thanh Noi & Kappas, 2018). Accuracy is 

expressed through qualitative descriptors (low, moderate, high, very high) supplemented by 

precise percentages or F1 scores where available, reflecting classification precision across satellite 

imagery datasets like Landsat and Sentinel-2. Uncertainty management assesses the capacity to 

ameliorate noise, such as atmospheric interference or sensor distortions, and to provide confidence 

measures, such as BNNs’ probabilistic outputs. Computational complexity quantifies processing 

demands and scalability, critical for large-scale applications. Advantages and limitations highlight 

practical implications, while application domains (urban, agricultural, aquatic) delineate 

contextual performance variations. A reference column ensures traceability to source studies, 

enhancing academic rigor. 

Table 1 reveals the superior performance of modern ML methods, with BNNs achieving a 

remarkable 91.85% accuracy in urban settings and CNNs attaining 90–95% accuracy across 

domains, driven by their ability to extract complex spatial features and mitigate noise (Chen et al., 

2020; Momeni et al., 2020). BNNs’ probabilistic outputs provide transparency, identifying high-

uncertainty areas like transitional zones, while CNNs’ multi-source data integration enhances 

precision, as seen in agricultural monitoring with an F1 score of 0.89 (Cao et al., 2019). Classical 

methods, however, exhibit limitations. RF achieves high accuracy (85–92% in urban contexts) but 

is computationally intensive, while SVM’s moderate accuracy (80–85% in agriculture) is 
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undermined by noise sensitivity (Thanh Noi & Kappas, 2018; Tikuye et al., 2023). Maximum 

Likelihood classifiers, with the lowest accuracy (65–75% in aquatic settings), are constrained by 

statistical assumptions, rendering them ineffective in noisy conditions (Akhbari et al., 2006; 

Yousefi et al., 2011). The table underscores that modern methods are optimal for complex, high-

resolution datasets, while classical methods remain viable in resource-limited settings where 

simplicity is prioritized (Foody, 2010). The reference column ensures each metric is empirically 

grounded, facilitating method selection for environmental monitoring applications. 

 

 

 

 

 

 

 

Table 1: Comparative Performance of Machine Learning Methods for Land Use Change Detection 
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Method 
Application 

Domain 
Accuracy 

Uncertainty 

Management 

Computational 

Complexity 
Advantages Limitations Reference 

SVM 

Urban 

Moderate 

to High 

(85–90%) 

Weak Moderate 

Robust 

separation of 

complex 

classes in 

high-

dimensional 

spaces 

Susceptible 

to noise and 

parameter 

tuning 

Huang et 

al., 2002; 

Rezaei et 

al., 2021 

Agriculture 
Moderate 

(80–85%) 
Weak Moderate 

Effective for 

small, high-

quality 

datasets 

Ineffective 

at resolving 

spectrally 

similar 

classes 

Thanh Noi 

& Kappas, 

2018 

Aquatic 
Moderate 

(75–85%) 
Weak Moderate 

Processes 

multidimens

ional 

spectral data 

efficiently 

Reduced 

precision 

under 

atmospheric 

perturbation

s 

Yousefi et 

al., 2011 

RF 

Urban 
High (85–

92%) 
Moderate High 

Stable 

performance 

across 

heterogeneo

us datasets 

Computatio

nally 

intensive, 

limiting 

scalability 

Thanh Noi 

& Kappas, 

2018 

Agriculture 

Moderate 

to High 

(82–90%, 

F1: 0.82) 

Moderate High 

Reliable in 

standardized 

conditions 

Vulnerable 

to 

environment

al noise 

Tikuye et 

al., 2023 

Aquatic 

Moderate 

to High 

(80–88%) 

Moderate High 

Adapts 

effectively 

to Sentinel-2 

imagery 

Cloud cover 

compromise

s precision 

Yousefi et 

al., 2011 

Maximum 

Likelihood 

Urban 
Moderate 

(75–85%) 
Weak Low 

Simple 

implementat

ion with 

minimal 

resources 

Inadequate 

for complex 

or noisy 

datasets 

Akhbari et 

al., 2006 

Agriculture 
Moderate 

(70–80%) 
Weak Low 

Minimal 

training data 

requirement

s 

Constrained 

by normality 

assumptions 

Ahmadpo

ur et al., 

2014 

Aquatic 

Low to 

Moderate 

(65–75%) 

Weak Low 

Streamlined 

and 

computation

ally efficient 

Poor 

handling of 

spectral 

ambiguity 

Yousefi et 

al., 2011 
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Table 2 evaluates the methods’ efficacy in addressing three critical uncertainty factors: atmospheric 

noise (e.g., cloud cover, aerosols), mixed pixels (pixels with multiple land cover types), and 

spectral similarity (e.g., overlapping reflectance between urban and bare soil). Performance is rated 

qualitatively (low, moderate, high, very high) based on the ability to minimize these factors’ 

impact, as reported in the reviewed studies (Olofsson et al., 2014; Ma et al., 2019). A reference 

column links ratings to their sources, ensuring credibility. 

This table highlights the exceptional capability of modern ML methods to mitigate uncertainty 

factors. BNNs achieve very high performance in urban settings for atmospheric noise and mixed 

pixels, leveraging probabilistic uncertainty quantification to enhance reliability (Chen et al., 2020). 

CNNs exhibit high performance across all factors in urban and agricultural contexts, effectively 

handling cloud cover and mixed pixels through multi-source data integration, as seen in 

deforestation detection (Cao et al., 2019; Ma et al., 2019). In aquatic settings, both methods show 

moderate performance against spectral similarity, reflecting challenges in distinguishing water 

bodies from adjacent land cover (Ma et al., 2019). Classical methods, however, are markedly 

limited. SVM and Maximum Likelihood are rated low across all factors, struggling with noise and 

spectral ambiguities due to reliance on engineered features and statistical assumptions (Rezaei et 

al., 2021; Ahmadpour et al., 2014). RF achieves moderate performance in urban and agricultural 

CNN 

Urban 
High (90–

95%) 
High Very High 

Automates 

feature 

extraction, 

resilient to 

noise 

Requires 

extensive 

datasets and 

infrastructur

e 

Ma et al., 

2019; 

Momeni 

et al., 

2020 

Agriculture 

High (89–

93%, F1: 

0.89) 

High Very High 

Excels with 

multi-source 

data 

integration 

Significant 

computation

al overhead 

Cao et al., 

2019 

Aquatic 
High (88–

94%) 
High Very High 

Mitigates 

cloud-

induced 

uncertainty 

Resource-

intensive 

processing 

Ma et al., 

2019 

BNN 

Urban 
Very High 

(91.85%) 
Very High Very High 

Probabilistic 

uncertainty 

quantificatio

n 

Complex, 

data-

intensive 

implementat

ion 

Chen et 

al., 2020 

Agriculture 
High (90–

94%) 
Very High Very High 

Reliable, 

interpretable 

predictions 

Scalability 

limited by 

computation

al demands 

Chen et 

al., 2020 

Aquatic 
High (89–

93%) 
Very High Very High 

Stable in 

complex, 

noisy 

conditions 

Requires 

substantial 

resources 

Gal & 

Ghahrama

ni, 2016 
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settings but falters in aquatic contexts under atmospheric noise (Tikuye et al., 2023; Yousefi et al., 

2011). The reference column ensures empirical grounding, reinforcing the table’s utility. The 

analysis advocates for modern methods in scenarios requiring robust uncertainty management, 

such as policy-relevant land use mapping, while acknowledging classical methods’ utility in less 

demanding applications (Olofsson et al., 2014; Turner et al., 2007). 

 

Table 2: Performance of Machine Learning Methods Against Specific Uncertainty Factors 

 

Collectively, these tables provide a multidimensional evaluation, affirming that modern methods 

offer superior accuracy and uncertainty management, albeit with high computational demands, 

while classical methods provide simplicity but limited efficacy in complex scenarios. The 

reference columns enhance transparency, facilitating method selection based on contextual factors 

like environmental complexity and computational resources. The findings advance remote sensing 

by highlighting the need for advanced methodologies to achieve reliable land use change detection, 

particularly for sustainable environmental management. Subsequent sections will explore the 

practical and policy implications of these results and propose future research directions. 

The comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection yields profound implications for environmental monitoring, offering actionable 

insights for sustainable resource management and policy development in both Iranian and global 

Method 
Application 

Domain 

Atmospheric 

Noise 

Mixed 

Pixels 

Spectral 

Similarity 
Reference 

SVM 

Urban Low Moderate Low 
Rezaei et al., 2021; 

Huang et al., 2002 

Agriculture Low Low Low 
Thanh Noi & Kappas, 

2018 

Aquatic Low Low Low Yousefi et al., 2011 

RF 

Urban Moderate Moderate Moderate 
Thanh Noi & Kappas, 

2018 

Agriculture Moderate Moderate Moderate Tikuye et al., 2023 

Aquatic Low Moderate Low Yousefi et al., 2011 

Maximum 

Likelihood 

Urban Low Low Low Akhbari et al., 2006 

Agriculture Low Low Low Ahmadpour et al., 2014 

Aquatic Low Low Low Yousefi et al., 2011 

CNN 

Urban High High High 
Momeni et al., 2020; 

Ma et al., 2019 

Agriculture High High High Cao et al., 2019 

Aquatic High High Moderate Ma et al., 2019 

BNN 

Urban Very High Very High High Chen et al., 2020 

Agriculture High High High Chen et al., 2020 

Aquatic High High Moderate 
Gal & Ghahramani, 

2016 
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contexts. The findings, which highlight the superior accuracy and uncertainty management of 

Convolutional Neural Networks (CNNs) and Bayesian Neural Networks (BNNs) over classical 

methods like Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood 

classifiers, underscore the transformative potential of advanced ML in addressing complex 

environmental challenges such as urban expansion, agricultural shifts, and deforestation. This 

section elucidates the practical and policy implications of these results, emphasizing their 

relevance for Iran’s rapidly urbanizing landscapes and global sustainability goals, while exploring 

the potential of hybrid approaches and multi-modal data integration to overcome identified 

limitations and enhance the applicability of ML methods in diverse settings. 

The superior performance of modern ML methods, particularly in complex and noisy datasets, 

positions them as critical tools for enhancing the precision of environmental monitoring. CNNs, 

with their ability to extract hierarchical spatial features, achieve high accuracy (90–95% in urban 

settings, F1 score of 0.89 in agriculture) and effectively mitigate uncertainties like cloud cover and 

mixed pixels, as demonstrated in urban and agricultural case studies (Cao et al., 2019; Momeni et 

al., 2020). BNNs further elevate reliability by providing probabilistic uncertainty estimates, 

achieving 91.85% accuracy in urban land cover classification and identifying high-uncertainty 

areas, such as transitional zones, which are critical for urban planning (Chen et al., 2020). These 

capabilities enable more accurate tracking of land use changes, such as deforestation in the 

Amazon or urban sprawl in Iran’s metropolitan areas, supporting evidence-based decision-making 

for sustainable development (Turner et al., 2007). In Iran, where rapid urbanization strains water 

resources and agricultural land, CNNs and BNNs can enhance monitoring of land use transitions, 

providing policymakers with reliable data to balance urban growth with environmental 

conservation (Rezaei et al., 2021; Yousefi et al., 2011). 

Globally, the implications are equally significant. The high accuracy and noise resilience of 

modern methods align with international sustainability frameworks, such as the United Nations’ 

Sustainable Development Goals, particularly those related to sustainable cities and terrestrial 

ecosystems. For instance, CNNs’ ability to integrate multi-source data, including optical and radar 

imagery, facilitates precise detection of deforestation and land degradation, as evidenced in global 

studies (Cao et al., 2019; Ma et al., 2019). This precision is vital for monitoring compliance with 

international agreements like REDD+ (Reducing Emissions from Deforestation and Forest 

Degradation), where accurate land use change detection underpins carbon credit allocations 

(Olofsson et al., 2014). BNNs’ uncertainty quantification further enhances transparency, enabling 

stakeholders to assess the reliability of predictions in heterogeneous landscapes, such as Africa’s 

savanna ecosystems or Southeast Asia’s wetland regions (Chen et al., 2020). These advancements 

empower global environmental agencies to implement targeted conservation strategies, mitigating 

the impacts of climate change and biodiversity loss. 
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Despite their strengths, the computational intensity and data requirements of modern ML methods 

pose significant challenges, particularly in resource-constrained regions like parts of Iran. The 

reliance on large, labeled datasets and advanced computational infrastructure limits the scalability 

of CNNs and BNNs in developing countries, where access to high-resolution imagery and 

processing resources is often restricted (Ma et al., 2019). For example, studies in Iran’s 

Zayandehroud Basin highlight the difficulty of applying modern methods in areas with limited 

data availability, where cloud cover and topographic variations further complicate classification 

(Yousefi et al., 2011). Classical methods, despite their lower accuracy, offer practical alternatives 

in such contexts. SVM and RF, with moderate computational demands and acceptable accuracy 

(85–92% for RF in urban settings), remain viable for smaller-scale or less noisy datasets, as 

demonstrated in Ethiopia’s Upper Blue Nile River Basin (Thanh Noi & Kappas, 2018; Tikuye et 

al., 2023). Maximum Likelihood classifiers, while limited in complex scenarios, provide a low-

resource option for preliminary assessments in data-scarce regions (Ahmadpour et al., 2014). 

The trade-offs between modern and classical methods suggest a compelling case for hybrid 

approaches, which combine the simplicity of classical methods with the robustness of modern 

techniques to balance accuracy and accessibility. For instance, integrating RF for initial feature 

selection with CNN-based classification could reduce computational demands while maintaining 

high accuracy, as proposed in global remote sensing studies (Ma et al., 2019). Such an approach is 

particularly relevant for Iran, where computational infrastructure is improving but remains limited 

in rural areas. Hybrid models could enable local authorities to monitor agricultural land use 

changes, such as shifts from croplands to orchards, with sufficient precision to inform water 

resource management without requiring extensive resources (Ahmadpour et al., 2014). Similarly, 

combining SVM’s efficiency with BNNs’ uncertainty quantification could enhance urban land use 

mapping in Tehran, where rapid development necessitates reliable yet cost-effective monitoring 

(Rezaei et al., 2021). 

Multi-modal data integration emerges as another promising strategy to mitigate uncertainty and 

enhance the applicability of ML methods. By fusing optical, radar, and topographic data, modern 

methods can overcome limitations like cloud cover and spectral similarity, as demonstrated in 

aquatic and agricultural settings (Ma et al., 2019). In Iran’s central plains, where cloud-induced 

noise hampers vegetation mapping, integrating Sentinel-1 radar with Sentinel-2 optical imagery 

could improve classification accuracy, enabling precise monitoring of crop health and land 

degradation (Yousefi et al., 2011). Globally, multi-modal approaches support comprehensive 

environmental assessments, such as tracking wetland restoration in Europe or forest recovery in 

South America, by leveraging complementary data sources to reduce uncertainty (Cao et al., 2019). 

These strategies align with the principles of land change science, which emphasize integrated data 

frameworks to address global environmental challenges (Turner et al., 2007). 
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The policy implications of these findings are significant, particularly for Iran, where environmental 

pressures from urbanization and climate variability necessitate robust monitoring systems. The 

adoption of modern ML methods, supported by investments in computational infrastructure, could 

strengthen Iran’s capacity to implement sustainable land use policies, such as those outlined in its 

national environmental plans. For instance, accurate land use change detection could inform 

zoning regulations to protect agricultural lands from urban encroachment, a pressing issue in 

provinces like Isfahan (Yousefi et al., 2011). Globally, the findings advocate for international 

collaboration to enhance data accessibility and computational resources, enabling developing 

nations to leverage advanced ML methods for environmental monitoring (Olofsson et al., 2014). 

Initiatives like the Global Land Cover Facility could facilitate data sharing, supporting the 

scalability of CNNs and BNNs in resource-limited regions. 

However, practical implementation faces challenges beyond computational constraints. The 

complexity of modern ML models, particularly BNNs, reduces their interpretability, potentially 

undermining trust in policy applications where transparency is critical (Chen et al., 2020). In Iran, 

where stakeholder engagement is essential for environmental policy adoption, simplified or hybrid 

models may be more readily accepted by local authorities. Additionally, the reliance on high-

quality training data poses a barrier in regions with sparse ground truth data, necessitating 

strategies like transfer learning or semi-supervised approaches to adapt models to local conditions 

(Foody, 2010). These challenges highlight the need for tailored solutions that balance technological 

advancement with practical feasibility, ensuring that the benefits of modern ML methods are 

accessible across diverse environmental and socio-economic contexts. 

In summary, the findings underscore the transformative potential of modern ML methods for 

environmental monitoring, offering high accuracy and uncertainty management to support 

sustainable resource management and policy development. In Iran, these methods can address 

pressing challenges like urban expansion and agricultural sustainability, while globally, they align 

with efforts to combat deforestation and climate change. Hybrid approaches and multi-modal data 

integration offer promising avenues to overcome computational and data limitations, enhancing 

the applicability of ML methods in resource-constrained settings. The subsequent section will 

address remaining challenges and propose future research directions to further advance the field 

of land use change detection. 

5. Conclusion and Future Work 

The comparative analysis of classical and modern machine learning methodologies for land use 

change detection illuminates their differential capabilities in managing uncertainty, a pivotal 

challenge in remote sensing applications. This study has systematically evaluated classical 

methods—Support Vector Machines, Random Forests, and Maximum Likelihood classifiers—

against modern approaches, specifically Convolutional Neural Networks and Bayesian Neural 
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Networks, across diverse environmental contexts, including urban, agricultural, and aquatic 

landscapes. The findings underscore the transformative potential of modern methods, which 

achieve superior accuracy and robust uncertainty management, particularly in complex and noisy 

datasets, while classical methods offer practical utility in resource-constrained settings. By 

synthesizing these results, exploring their implications for environmental monitoring, and 

identifying persistent challenges, this study contributes to the advancement of sustainable land 

management practices in Iran and globally. This concluding section consolidates the key insights, 

delineates the challenges that hinder the widespread adoption of these methodologies, and 

proposes a comprehensive agenda for future research to enhance the efficacy and accessibility of 

land use change detection. 

The investigation reveals that modern machine learning methods, notably Convolutional Neural 

Networks and Bayesian Neural Networks, outperform their classical counterparts in nearly all 

evaluated metrics. Convolutional Neural Networks demonstrate exceptional precision, achieving 

classification accuracies of 90–95% in urban settings and an F1 score of 0.89 in agricultural 

applications, driven by their ability to automatically extract complex spatial features from high-

resolution satellite imagery. Their resilience to noise, such as cloud cover and mixed pixels, 

enables reliable detection of subtle land use transitions, such as urban sprawl or crop rotation, 

which are critical for informed environmental planning. Bayesian Neural Networks further 

enhance this capability by providing probabilistic uncertainty estimates, achieving a remarkable 

91.85% accuracy in urban land cover classification and offering transparency in identifying high-

uncertainty areas, such as transitional zones between residential and industrial zones. These 

strengths position modern methods as indispensable tools for monitoring dynamic land use 

changes, supporting applications ranging from urban planning in rapidly growing cities like Tehran 

to deforestation tracking in global hotspots like the Amazon Basin. 

Classical methods, while less performant in complex scenarios, retain significant value in specific 

contexts. Random Forests, with accuracies of 85–92% in urban settings, offer stability in 

heterogeneous datasets, making them suitable for agricultural monitoring in regions with moderate 

data quality, such as Ethiopia’s Upper Blue Nile River Basin. Support Vector Machines, achieving 

85–90% accuracy in urban applications, provide a computationally efficient option for smaller 

datasets, particularly in resource-limited areas of Iran where advanced infrastructure is scarce. 

Maximum Likelihood classifiers, despite their lower accuracy of 65–75% in aquatic settings, 

remain viable for preliminary assessments due to their simplicity and minimal data requirements. 

These findings highlight a critical insight: no single method is universally optimal. Instead, the 

choice of methodology must be guided by contextual factors, including data availability, 

environmental complexity, and computational resources, ensuring that both modern and classical 

approaches contribute to a diversified toolkit for land use change detection. 
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The practical implications of these findings are profound, particularly for environmental 

monitoring in Iran, where rapid urbanization and climate variability exacerbate pressures on 

agricultural and water resources. Modern methods’ high accuracy enables precise tracking of urban 

expansion, informing zoning regulations to protect arable lands from encroachment, a pressing 

issue in provinces like Isfahan. Globally, the ability of Convolutional Neural Networks and 

Bayesian Neural Networks to integrate multi-source data supports compliance with international 

sustainability frameworks, such as the United Nations’ Sustainable Development Goals, by 

providing reliable data for monitoring deforestation and land degradation. The study also 

advocates for hybrid approaches, combining the simplicity of classical methods with the 

robustness of modern techniques, and multi-modal data integration, fusing optical and radar 

imagery, to enhance accessibility and scalability. These strategies are particularly relevant for 

developing nations, where computational and data limitations hinder the adoption of advanced 

methodologies. 

Despite these advancements, several challenges impede the widespread application of machine 

learning in land use change detection, necessitating a forward-looking research agenda to address 

them. One primary challenge is the computational intensity of modern methods, which require 

substantial processing power and advanced infrastructure, posing barriers in resource-constrained 

regions. For instance, deploying Bayesian Neural Networks in rural Iran, where access to high-

performance computing is limited, remains impractical without significant investment in 

technological infrastructure. Similarly, Convolutional Neural Networks’ reliance on large, labeled 

datasets restricts their scalability in areas with sparse ground truth data, such as remote aquatic 

ecosystems or underdeveloped agricultural regions. These computational and data barriers 

underscore the need for lightweight algorithms that maintain high accuracy while reducing 

resource demands, ensuring that advanced methods are accessible across diverse socio-economic 

contexts. 

Another significant challenge is the interpretability of modern machine learning models, 

particularly Bayesian Neural Networks, whose complex architectures and probabilistic outputs can 

obscure decision-making processes. In policy-relevant applications, such as environmental 

planning or international conservation agreements, stakeholders require transparent and 

interpretable models to build trust and facilitate adoption. For example, local authorities in Iran 

may hesitate to rely on Convolutional Neural Networks for land use zoning if the models’ 

predictions lack clear explanations, limiting their practical utility. Classical methods, while 

simpler, also face interpretability issues due to their reliance on manually engineered features, 

which may not fully capture the nuances of complex landscapes. Addressing this challenge 

requires the development of explainable artificial intelligence frameworks that elucidate model 

decisions without sacrificing performance, enabling stakeholders to understand and act on 

predictions with confidence. 
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Data scarcity remains a persistent obstacle, particularly in developing countries where high-quality 

satellite imagery and ground truth data are often unavailable. In Iran’s central plains, for instance, 

cloud cover and limited field surveys hinder the creation of robust training datasets, compromising 

the performance of both classical and modern methods. This issue is compounded in aquatic 

settings, where spectral similarities between water bodies and adjacent land cover types further 

complicate classification. Strategies like transfer learning, which adapts pre-trained models to new 

contexts with minimal data, offer a promising solution, but their efficacy in highly variable 

environments remains underexplored. Similarly, semi-supervised learning, which leverages 

limited labeled data alongside abundant unlabeled data, could enhance model performance in data-

scarce regions, but its application to land use change detection requires further investigation. 

The integration of multi-modal data, while promising, presents additional challenges related to 

data heterogeneity and processing complexity. Fusing optical, radar, and topographic data requires 

sophisticated preprocessing pipelines to align disparate data sources, a task that demands 

significant computational resources and expertise. In global contexts, where data formats and 

quality vary widely, standardizing multi-modal integration protocols is essential to ensure 

consistency and reliability. Furthermore, the ethical and privacy implications of using high-

resolution satellite imagery, particularly in urban settings, warrant careful consideration. 

Monitoring land use changes in densely populated areas may inadvertently capture sensitive 

information, raising concerns about data misuse and necessitating robust governance frameworks 

to protect stakeholder interests. 

Looking ahead, future research should prioritize several key directions to address these challenges 

and advance the field of land use change detection. First, the development of lightweight machine 

learning algorithms is critical to enhance the accessibility of modern methods. Techniques such as 

model pruning, quantization, and efficient neural network architectures could reduce the 

computational footprint of Convolutional Neural Networks and Bayesian Neural Networks, 

enabling their deployment on edge devices or low-resource systems. Such innovations would 

democratize access to advanced methodologies, allowing regions like rural Iran to leverage high-

accuracy models for agricultural and aquatic monitoring without requiring extensive infrastructure. 

Second, advancing explainable artificial intelligence is essential to improve model interpretability, 

particularly for policy applications. Developing frameworks that visualize feature importance, 

quantify uncertainty contributions, and provide human-readable explanations of predictions could 

bridge the gap between complex models and stakeholder needs. For instance, integrating attention 

mechanisms into Convolutional Neural Networks could highlight the spatial regions driving 

classification decisions, offering insights into urban land use patterns that policymakers can readily 

interpret. Similarly, enhancing Bayesian Neural Networks with interpretable uncertainty metrics 
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could facilitate their adoption in high-stakes applications, such as international environmental 

monitoring. 

Third, expanding the application of semi-supervised and transfer learning techniques holds 

significant potential for addressing data scarcity. Future studies should explore the adaptation of 

pre-trained models to diverse environmental contexts, such as Iran’s arid landscapes or Southeast 

Asia’s wetlands, using minimal labeled data. Semi-supervised learning could be particularly 

effective in aquatic settings, where unlabeled satellite imagery is abundant but ground truth data 

is scarce, enabling models to learn robust features from noisy or incomplete datasets. These 

approaches could also support the creation of global land use change detection models that 

generalize across regions, reducing the need for region-specific training data. 

Fourth, standardizing multi-modal data integration protocols is a priority to streamline the fusion 

of optical, radar, and topographic data. Research should focus on developing automated 

preprocessing pipelines that align data sources, correct for inconsistencies, and optimize 

computational efficiency. Such protocols would enhance the scalability of multi-modal 

approaches, enabling their use in large-scale environmental monitoring programs, such as global 

deforestation tracking or wetland restoration initiatives. Collaborative efforts to establish open-

access data repositories could further support these endeavors, providing researchers with diverse 

datasets to train and validate integrated models. 

Fifth, addressing the ethical and privacy implications of land use change detection requires the 

development of governance frameworks that balance technological advancement with stakeholder 

rights. Future work should explore privacy-preserving techniques, such as federated learning, 

which enable model training without sharing sensitive data, ensuring compliance with data 

protection regulations. Engaging local communities in the design and deployment of monitoring 

systems could also enhance trust and ensure that land use change detection aligns with societal 

needs, particularly in urban Iran, where community input is critical for sustainable development. 

In conclusion, this study establishes a robust foundation for understanding the comparative 

efficacy of classical and modern machine learning methods in land use change detection, 

highlighting the transformative potential of Convolutional Neural Networks and Bayesian Neural 

Networks in managing uncertainty. While classical methods retain value in resource-constrained 

settings, modern approaches offer unparalleled accuracy and reliability, supporting sustainable 

environmental monitoring in Iran and globally. The identified challenges—computational 

intensity, interpretability, data scarcity, and data integration complexities—underscore the need for 

innovative solutions to enhance the accessibility and impact of these methodologies. By pursuing 

lightweight algorithms, explainable AI, semi-supervised learning, standardized multi-modal 

integration, and ethical governance, future research can unlock the full potential of machine 

learning for land use change detection, advancing the field toward more reliable, inclusive, and 
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sustainable environmental management. These efforts will ensure that land use change detection 

continues to evolve as a critical tool for addressing the pressing environmental challenges of the 

21st century, from urban sustainability to global biodiversity conservation. 
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Abstract 

By examining the evapotranspiration rate of the northern and southern parts of Urmia Lake, an 

attempt has been made to find a better solution for sustainable management of the region based on 

prioritizing sensitive areas for further attention. By integrating Landsat-based evapotranspiration 

estimates into a GIS framework, we spatially identify and rank the most vulnerable zones, thereby 

guiding targeted management strategies. To calculate evapotranspiration, the SEBAL algorithm 

was used with the help of Landsat satellite data from 2002 to 2020. Due to its comparative nature, 

the evapotranspiration rate was calculated in a simplified manner and without considering 

meteorological parameters. First, by examining the rate of groundwater changes, we found that the 

rate of decrease in both regions was almost the same, and this data was obtained from the GRACE 

satellite. Using precipitation data and calculating the standard precipitation index (SPI), we 

concluded that when precipitation decreased in the southern part, evaporation was much higher 

than in the northern part with increasing temperature, while in different time intervals, they 

changed almost at a constant ratio in both regions, which indicates that water salinity has increased 

due to climate change, which has led to increased evaporation and ultimately a further decrease in 

lake water in the southern part, which requires attention to this area in regional management. 
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1. Introduction 

The Lake Urmia watershed is the area where surface and groundwater flows into Lake Urmia (Jani 

et al., 2023), which is one of the key areas in the management of Iranian water resources, with a 

network of seasonal and permanent rivers, plays an important role in feeding and maintaining the 

saline Lake Urmia. This basin includes rivers, agricultural areas, urban areas, and other natural 

ecosystems, all of which directly or indirectly affect the lake's water level (Jani et al., 2023; Kazemi 

Garajeh, Akbari, et al., 2024). Due to its arid and semi-arid climate conditions, this region is always 

exposed to severe climate changes, increased water withdrawal for agricultural and industrial uses, 

and reduced rainfall. Factors that have caused the lake's water level to decrease, drought to 

increase, and environmental and economic problems to arise. On the other hand, the importance 

of this region, due to its direct impact on agriculture, biodiversity, and the sustainability of the 

region's ecosystems, has made careful monitoring of hydrological and climatic trends a scientific 

and management necessity. This basin is a vast area in the northwest of Iran that includes many 

sub-basins, each with its hydrological characteristics (Jani et al., 2023). The main water sources of 

the basin are rainfall, surface runoff, and groundwater. Numerous rivers also originate from the 

mountains and flow into Lake Urmia or groundwater, which is important in supplying the lake 

with water (Jani et al., 2023). In two decades, due to the decrease in the level of Lake Urmia, the 

salinity of the lake has increased. The risk of increasing salt marshes and the spread of various 

diseases will be even greater than the size of this basin, which is a very vital issue in the region, 

and for this reason, focusing on sustainable management of the region and controlling water 

consumption is essential for this region. 

The vital framework for the analysis and management of sustainable development in the Urmia 

Lake basin is formed by Geographic Information Systems (GIS) and Remote Sensing (RS). RS 

offers the opportunity to acquire high-resolution spatial and temporal data essential for the 

determination of key climatic indicators. Among the indicators is the measurement of surface 

evaporation and transpiration, the rate of which has a direct relationship with the temperature of 

the air and the water. Another indicator is the measurement of the rainfall rate, the increase or 

decrease of which over time can be a telltale sign of climate change. Yet another is the 

determination of the change in groundwater storage, the knowledge of which is essential for 

understanding the basin's hydrologic regime.These datasets are then integrated, processed, and 

analyzed in GIS environments using Google Earth Engine and ArcGIS Pro to produce 

spatiotemporal maps of the northern and southern basins. Through GIS-based spatial analysis, 

sensitive areas are prioritized based on the intensity of climatic and human impacts, which helps 

in targeted management strategies and enhances the efficiency of watershed restoration efforts. 

The discussion that is being raised now is to improve the management of the region in order to 

have the greatest impact in the shortest time, and this requires that areas with a high level of risk 
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are identified, the cause of its occurrence is determined, and the effects that this situation will have 

on the region are analyzed and examined. 

In this article, from the perspective of sustainable management of the region, considering the 

factors of drought and assessing the intensity of evaporation, climate change and groundwater 

depletion, it has been examined and attempts to find the part of the lake with the greatest amount 

of changes and its reasons and prioritize restoration in order to improve the quality of management. 

2. Literature review 

Due to climate change and human manipulation, this area is heading towards a decrease in water 

reserves and drought. Some studies show that human factors have played a more important role 

than climate change in the drying up of Lake Urmia. Human activities such as excessive water 

consumption in the agricultural sector and urbanization development put great pressure on the 

water resources of the basin. As a result, sustainable water resource management and changes in 

consumption patterns seem necessary. Furthermore, attention to adaptation strategies for water 

scarcity could mitigate the negative effects of this trend (Hooshyaripor et al., 2022; Sadeghfam et 

al., 2022; Shams Ghahfarokhi & Moradian, 2023). 

The water resources of the Lake Urmia basin have been affected in various ways by climate 

change. These ways include our main focus of this comprehensive report: lake temperature, basin 

precipitation, basin evaporation, snowfall in the basin, drought conditions in the basin, 

groundwater resources in the basin, and river flow into the basin. Our main interest lies in 

understanding how the lake and its surrounding resources have been impacted by a changing 

climate. Why? Because an understanding is crucial for developing effective mitigation (reducing 

the intensity of impacts) and adaptation (making necessary changes to cope with the impacts) 

strategies.. Further research into the specific magnitudes of these effects can better inform water 

management policies in the region (Hesami & Amini, 2016; Jani et al., 2023; Kazemi Garajeh, 

Haji, et al., 2024). In (Kazemi Garajeh, Haji, et al., 2024) article examines the relationship between 

various variables such as temperature, precipitation, snow cover, groundwater salinity, and Lake 

water level. Changes in the Lake water level from 2000 to 2020 are also examined, showing that 

increasing temperature and evaporation of the water surface have caused the lake level to decrease, 

as well as groundwater salinity, which reduces arable land. The article (Jani et al., 2023) also 

examines climate change in the Lake Urmia basin. Some studies in this article have shown a trend 

of increasing temperature and decreasing rainfall. These findings underscore the complex interplay 

of climatic factors impacting the Lake Urmia ecosystem and the livelihoods dependent upon it. 

Further interdisciplinary research is essential to fully comprehend these dynamics and to devise 

sustainable solutions for the basin's future. 

The article (Shams Ghahfarokhi & Moradian, 2023) addresses the causes of Lake Urmia's 

shrinking, focusing on climate change and human factors, and also points out that lack of 

precipitation and increased demand for water can lead to drought. A multivariate index for drought 
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perception has been introduced that, in addition to precipitation, also considers water demand from 

the population. This innovative approach highlights the interconnectedness of environmental 

changes and societal pressures in exacerbating water scarcity. Such integrated indices can provide 

a more holistic understanding of drought's impact and inform more effective water management 

strategies. The results show that drought perception is greater in densely populated areas and that 

population growth exacerbates the impact of drought (Hooshyaripor et al., 2022). 

The article (Feizizadeh et al., 2023) examines the health effects of the drying up of saline lakes on 

the local population. This study examines the effects of the drying up of Lake Urmia on the health 

of residents of Shabestar County and shows that the health of residents of the region will be at risk 

with the trend towards drought. The article (Schulz et al., 2020) examines the factors that have 

caused the water level of Lake Urmia to decrease, and this article refers to the effect of evaporation 

on the decrease in the lake's water volume. These findings highlight the far-reaching consequences 

of the lake's desiccation, extending beyond environmental concerns to directly impact public 

health. Therefore, addressing the water crisis in Lake Urmia is not only an ecological imperative 

but also a crucial public health issue. 

The article of (Jalilvand et al., 2021) examines the issue that the drying Lake Urmia has become a 

new source of dust of regional importance. The article (Alipour & Olya, 2015) presents a 

sustainable planning model for the restoration of Lake Urmia. This model emphasizes the 

development of an adaptive governance system, taking into account the capacity of the lake 

ecosystem. This article highlights the importance of stakeholder participation in water resources 

planning and management, which can reduce the risk of drought. These studies underscore the 

multifaceted challenges posed by the lake's decline, ranging from ecological and health impacts to 

the necessity of collaborative governance for effective restoration. The proposed sustainable 

planning model offers a crucial framework for addressing the crisis through inclusive and adaptive 

management strategies. 

All the articles from different aspects of the discussion related to human and climatic reasons for 

the decrease in water reserves and the increase in the drought trend in the region have examined 

and the risks that may occur in the region if this trend continues, and have concluded that proper 

management of water resources and restoration of the lake is a vital issue.  

 

3. Methodology 

3.1. Study area 

Lake Urmia is a saltwater lake in northwestern Iran and the largest inland lake in the country. The 

lake is located between the provinces of West Azerbaijan and East Azerbaijan (figure 1). The lake's 

water level has decreased significantly in recent decades, with some sources such as Wikipedia 

stating that the decrease was about 95 percent. To accurately examine the process of evaporation 
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and transpiration and its effects on the salinity of the lake water, in this study, two sample areas 

were selected within Lake Urmia, one above the lake and the other below, with the bridge in the 

middle of the lake as the dividing criterion. 

 

Figure 1. Urmia lake basin 

The changes in these two areas have been different over time, which has caused different climatic 

changes in those areas. This division, in addition to showing regional differences, provides the 

basis for providing optimal solutions for managing water resources and dealing with the 

consequences of drought at the regional level. 

3.2. Dataset 

This study uses a set of high-quality and reliable satellite data to analyze drought and water 

resource trends. Land cover data were extracted from Landsat 8 and Landsat 7 satellites; these 

images provide a suitable basis for calculating time series of surface water cover and thermal 

indices due to their high resolution (30 m for multispectral bands and 15 m for panchromatic bands) 

and advanced processing capabilities. Landsat 8, which was completed in 2013, is equipped with 

OLI and TIRS structures; while Landsat 7, which began its operations in 1999 and has suffered 

from gaps in images despite the SLC failure since 2003, continues to be used as a valuable source 

for analyzing environmental changes and vegetation cover. Both satellites, in an orbit with an 

altitude of about 705 km and a 16-day visit period, provide the possibility of providing up-to-date 

and accurate data for environmental and water resource studies. This time coverage allows 

researchers to monitor changes in the Earth's surface over time (Sreekanth et al., n.d.). Landsat 

data is used in various fields such as agriculture, water resources management, urban studies, and 

environmental studies (LALMUANZUALA et al., 2023; Sreekanth et al., n.d.; Yang et al., 2020). 

Landsat satellite thermal bands have been used to calculate land surface temperature (LST) and 
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sea surface temperature (SST)  (Wang et al., 2020). The normalized difference vegetation index 

(NDVI) is calculated by near-infrared and red bands and visible and infrared bands of Landsat 

have been used to calculate surface reflectance (Wang et al., 2020). Also, the green visible light 

(Green) and short-wave infrared (SWIR1) bands were used to calculate the normalized difference 

water index (NDWI) (Sreekanth et al., n.d.). 

To assess precipitation, TRMM satellite data was used, which is a joint mission of NASA and the 

Japan Meteorological Agency, launched in 1997, and provides accurate information on 

precipitation patterns in tropical and subtropical regions using precipitation radar and infrared 

sensors (Wu et al., 2024). TRMM data is a reliable source in climate studies, agriculture, and water 

resources management due to its wide geographical coverage and high accuracy in measuring 

precipitation (Wu et al., 2024). 

GRACE satellite data has also been used to investigate changes in groundwater storage and 

analyze hydrological trends. GRACE, launched by NASA and the German Space Agency in 2002, 

provides information on changes in total terrestrial water storage, including groundwater, surface 

water, snow, and soil moisture, by accurately measuring changes in the Earth's gravitational field. 

In particular, the MASS_GRIDS_V04/LAND product, which records the equivalent water 

thickness (LWE Thickness), is an essential tool in groundwater storage monitoring and water 

resources management. 

The satellites and the bands they use are shown in an integrated manner as shown in Table 1. This 

data was extracted through Google Earth Engine and then used in the ArcGIS Pro environment for 

further analysis. 

Table 1. Dataset 

Satellite Bands Start date End date 

Landsat 7 Blue, green, red, NIR, Thermal Infrared 2002 2019 

Landsat 8 Blue, green, red, NIR, SWIR1, Thermal Infrared 2002 2019 

TRMM precipitation 2002 2019 

GRACE lwe_thickness_csr 2002 2019 

 

3.3. Methods 

According to the flowchart in Figure 2, first, the period when the intensity of the lake water level 

decrease was high is identified and selected, and this is done by examining Landsat satellite images 

of the region using the time series of surface water changes. After determining the time period, we 

divide the lake into two parts, the northern and southern, and select the deepest parts as a sample. 
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Groundwater information is examined by the GRACE satellite in the selected areas to show the 

extent of its changes and its impact on the studies. Then, precipitation data is collected via the 

TRMM satellite and SPI is modeled. The albedo value is extracted from the Landsat satellite and 

used to model evapotranspiration using the simplified SEBAL algorithm. By analyzing the data 

obtained from the ET and SPI indices, the evaporation trend during the years 2002 to 2019 is 

examined and conclusions are drawn. 

 

Figure 2. Research flowchart 

The purpose of the study can play a role in choosing the right time frame. If our goal is to assess 

the effects of climate change, longer time frames are a better choice, but if our goal is to assess the 

effects of human activities, shorter and more precise time frames may be more appropriate (Ashraf 

et al., 2021) In some cases, periods are selected based on major changes in regional conditions, 

such as the construction of dams or land use changes (Jani et al., 2023; Tahmouresi et al., 2024). 

After considering the study objectives and regional variations, a period for which data is available 

should be selected. The desired period was determined by examining Landsat satellite images and 

examining the NDWI index (Shams Ghahfarokhi & Moradian, 2023). NDWI is used to measure 

the amount of water available in an area using remote sensing data. This index is calculated using 

a combination of the green and near-infrared bands of the electromagnetic spectrum. The green 

and near-infrared bands are used to calculate the NDWI index, and its equation is as follows 

(Shams Ghahfarokhi & Moradian, 2023): 

NDWI = (Green - NIR) / (Green + NIR)          (1) 

High NDWI values indicate more water in the area, as water reflects more in the green spectrum 

and absorbs more in the near-infrared spectrum. Conversely, lower values indicate a lack of water 

or vegetation. Based on the trend of lake surface area changes, the period during which the rate of 

change is greater is determined (Shams Ghahfarokhi & Moradian, 2023) and this is important for 

determining the best time frame. 
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By measuring changes in the Earth's gravitational field, the GRACE satellite can determine 

changes in groundwater reserves. These changes are caused by the movement of water mass below 

the Earth's surface. Studies on Lake Urmia have used GRACE data to investigate the decline in 

groundwater reserves due to over-extraction and climate change (Ashraf et al., 2021). For this 

purpose, the lwe_thickness_csr band is used in the MASS_GRIDS_V04/LAND product. 

The TRMM satellite has been used to extract precipitation data, which greatly helps us in ensuring 

the selection of the appropriate time frame for the study. TRMM data is available for a relatively 

long period of time (1998-2024). This allows for the analysis of precipitation trends and their 

impact on water resources. These data have been used as one of the key inputs for monitoring 

climate change and human impacts on water resources in the Lake Urmia basin (Kazemi Garajeh, 

Akbari, et al., 2024). SPI can be calculated using TRMM satellite data. It is one of the most widely 

used indices for drought assessment, introduced by McKee and colleagues in 1993. This index is 

calculated based on precipitation data at different time scales and quantifies the severity and 

duration of drought (Hooshyaripor et al., 2022; Sadeghfam et al., 2022). The SPI value is 

calculated based on the changes in total precipitation over a specified period of time from the 

climate average and is normalized using the standard deviation of precipitation over the same 

period (LALMUANZUALA et al., 2023). To create the index, we first extract the precipitation 

data for the desired period. Then, an appropriate probability distribution function (usually the 

gamma distribution) is fitted to the precipitation data. The gamma distribution fits the monthly 

precipitation data well. Based on the fitted probability distribution, the cumulative probability for 

each precipitation value is calculated. Finally, the cumulative probability value is converted to the 

equivalent value in the standard normal distribution. This value is the SPI value (Hooshyaripor et 

al., 2022; Shams Ghahfarokhi & Moradian, 2023). The SPI equation is as follows (Sadeghfam et 

al., 2022): 

SPI = ∅⁻¹(α(P))          (2) 

In this formula, ∅⁻¹(·) represents the inverse function of the standard normal distribution, and α(P) 

represents the gamma distribution fitted to the precipitation data (P). The SPI index is divided into 

5 classes as described in Table 2: 

Table 2. Classification of SPI 

1 <= SPI -1 < SPI < 1 -1.5 < SPI < -1 -2 < SPI <= -1.5 SPI <= -2 Class 

Full of water Normal Slightly dry Dry Very dry Description 

 

Another important index to consider is the ET index based on the SEBAL algorithm. Many factors 

affect the accuracy of these calculations, but due to limited access to ground data, only the albedo 
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portion of Landsat satellites was used in this study, and the simplified ET formula was used because 

both points are located on a lake and the time series of these two regions are comparable. The 

SEBAL algorithm is a method for calculating evapotranspiration at the land surface using remote 

sensing data. This algorithm works based on the principle of the land surface energy balance and 

uses satellite data and meteorological observations to estimate large-scale evapotranspiration rates 

(Wang et al., 2020). The main equation of the SEBAL algorithm is as follows (Wang et al., 2020): 

LE = Rn - H - G          (3) 

Latent heat flux (ET) Indicates the amount of energy consumed for evaporation and transpiration, 

surface net radiation (Rn) is the amount of net energy received from the sun minus reflected energy 

and surface thermal radiation, sensible heat flux (H) is The rate of heat transfer between the ground 

surface and the air and soil heat flux (G) is The rate of heat transfer into the soil.  

To calculate the value of Rn we need the albedo value. The albedo value from Landsat satellites is 

obtained using a simple approximation with the following equation (De Razza et al., 2024): 

Surface albedo (SA) = bBLUE ∗ ρBLUE + bGREEN ∗ ρGREEN + bRED ∗ ρRED + bNIR ∗ 

ρNIR + bSWIR1 ∗ ρSWIR1 + bSWIR2 ∗ ρSWIR2 + b0          (4) 

 

ρ is all two-way surface reflections and b is the corresponding conversion factors(De Razza et al., 

2024). 

After obtaining the albedo, the net surface radiation is obtained with the following simplified 

equation: 

Rn = SA * 0.77          (5) 

We approximately consider the value of G as 5% of the value of Rn and H as 30% of the value of 

Rn-G, so the simplified equation of evaporation and transpiration is calculated as follows: 

ET = Rn * 0.665          (6) 

Here, evapotranspiration ET is equivalent to latent heat flux LE. 

The analyses obtained from the SPI and ET indices explain the status of the regions and the 

reasons for it. 

4. Results 

After examining images from different years, images from 2002 and 2017 were obtained from 

Landsat 7 and Landsat 8 satellites, respectively, and we obtained a time series of surface water 

changes. According to Figure 3, the rate of lake surface water changes in this period is very high 

and is suitable for studying evapotranspiration in the target areas. During this period, due to human 
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manipulations such as the uncontrolled construction of dams and changes in land use (Ahmady-

Birgani et al., 2018; Kazemi Garajeh, Akbari, et al., 2024), as well as climate change(Kazemi 

Garajeh, Akbari, et al., 2024), the rate of changes in the lake has been very high, causing great 

concern about the future of the region. 

 

Figure 3. From left to right, images from 2002 and 2017, and a time series of changes in Lake Urmia's level 

Using GRACE satellite images for the areas specified in Figure 1, the amount of groundwater 

changes was obtained in the period from 2002 to 2017. According to Figure 1, which is the result 

of extracting the aforementioned satellite data in the specified areas, it is observed that there was 

a decrease of approximately 0.224 units in the entire period, which indicates water stress and 

drought. Long periods of rainfall deficiency (Figure 4) reduce the recharge of groundwater aquifers 

and, as a result, reduce their thickness (LALMUANZUALA et al., 2023). Reduced precipitation 

and increased evaporation and transpiration from plants cause a decrease in soil moisture and, as 

a result, a decrease in groundwater recharge (Kukunuri et al., 2022). Other reasons for the decline 

in groundwater depth include land use changes. Land use changes can reduce soil permeability 

and disrupt groundwater recharge, and the lack of sustainable water resource management can lead 

to rapid declines in water levels and aquifer thickness  (Shahfahad et al., 2022). By examining 

Figure 4, we can conclude that the rate of groundwater changes in both regions is almost the same. 
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Figure 4. The thickness of groundwater between 2002 and 2017 

The classified images related to SPI according to Figure 4 show a very large decrease in the amount 

of precipitation compared to the average of the entire period in the Urmia Lake basin. This image 

shows that in 2002, the amount of precipitation was such that the region was above the average of 

the precipitation in the entire period and was at a high and medium level, but in 2017 this amount 

faced a very sharp drop. The quantitative SPI index for the period 2002 to 2017 has been calculated 

according to Figure 2 and shows that the SPI in 2002 was 0.866, which indicates that the entire 

region is at an average level in terms of water content, and this value was at a high water level in 

2006, but after that it faced a sharp decline until 2008, so that the region was at a dry level or 

drought, and finally in 2017, with a value of -1.3, it was also at a dry level, but after that the region 

has adopted a better routine. 

 

Figure 5. SPI image in 2002 and 2017 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Thickness of groundwater

North South



May 2025 

Volume 1 

Issue 1 

 
DOI: 10.48308/ijce.2025.240177.1008 

103 
 

 

Figure 6. SPI of Urmia lake basin 

These data show that one of the reasons for the decrease in groundwater is climate change and the 

decrease in average annual rainfall (Srinivas et al., 2022). The SPI index was calculated for both 

designated regions, and the result is as shown in Figure 3. According to the Figure 6, the rainfall 

in the northern region was slightly higher than the southern region until 2004, but after that, the 

rainfall in the southern region was somewhat higher than the northern region until 2010, but in 

general, both regions had a similar trend in rainfall compared to the average rainfall of the entire 

region from 2002 to 2010. After 2010, the rate of change in the two regions has been different, so 

that in the northern region from 2011 to 2016, the rainfall was higher than in the southern region, 

and the difference in these changes between the two regions in 2014 and 2015 was very large, and 

in 2016, this relationship was reversed and the situation in the southern region was better than the 

northern region. This situation is reversed again in 2019 according to the chart. This situation 

shows that after 2010, the rate of climate change in the region is very severe. This chart shows that 

the precipitation patterns in these two regions differ over time and may be influenced by different 

climatic factors as the inversion of the SPI graph between the two regions indicates that different 

climatic patterns prevail in these regions. (LALMUANZUALA et al., 2023). This can be due to 

factors such as differences in weather systems, geographical location, and topographic effects 

(Eicker et al., 2024; Qi et al., 2024). 
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Figure 7. SPI of two regions 

The evapotranspiration rate was simply calculated using Landsat satellite data for the region in 

March as a representative of the warm season and is shown in Figure 8. According to the chart, the 

evapotranspiration rate decreased by approximately 0.002 until 2004 compared to 2002. Due to 

the decrease in precipitation in 2005, the evaporation rate in the entire region increased, and 

between 2006 and 2007, it decreased again. But after 2007, it increased to the same level as in 

2002. The highest evapotranspiration rate was in 2015, and after that, it decreased until 2020 and 

was in the average evapotranspiration rate for the entire period. This situation indicates that a 

decrease in the chart indicates a decrease in temperature or a decrease in precipitation, and an 

increase in evapotranspiration rate indicates an increase in temperature in the region and a decrease 

in precipitation over the entire period (Bozorg-Haddad et al., 2022; Jani et al., 2023; Schulz et al., 

2020). 
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Figure 8. Urmia lake basin evapotranspiration 

After examining the rate of evapotranspiration in the entire region, we will continue to examine 

the rate of evapotranspiration in two selected regions. The calculated values are given in Figure 9. 

According to the data obtained in this chart, which is from two regions on the lake, it can be 

examined and concluded that the rate of evapotranspiration in the north and south of the lake 

increased very slightly between 2002 and 2013 and both regions are similar to each other. 

However, these values increased sharply in the southern part between 2014 and 2015 and returned 

to their previous state in 2016. According to Figure 3, it can be seen that the precipitation in 2015 

in the southern part was much lower than in the northern part. 

 

Figure 9. Evapotranspiration of two selected regions 
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The results of the analysis show that due to the construction of a bridge in the middle of the lake, 

which prevents the circulation of water in its northern and southern parts, and the construction of 

numerous dams that have reduced the amount of water in the lake, the water in Lake Urmia has 

not only decreased, but also increased the salinity of the water in the southern part compared to 

the northern part. Since the region is affected by different climatic conditions, the rate of 

evaporation and dryness is different in the northern and southern parts. In the paper (Alipour & 

Olya, 2015)refers to sustainable adaptive governance model and the paper (Shams Ghahfarokhi & 

Moradian, 2023) deals with resilience-based water resources management which develops 

scenarios for lake restoration with the help of integrated water resources management (IWRM). It 

should be noted that any change in the water supply to the lake or changes in the entire region that 

cause harmful climate change and reduce precipitation on the lake surface (Bozorg-Haddad et al., 

2022) can increase water salinity, which will result in increased evaporation and transpiration of 

the Lake Surface and further decrease in the lake water level (Schulz et al., 2020). Therefore, 

before making any changes, climatic conditions and lake water salinity must be considered to 

prevent the lake's water from decreasing and its causes. 

5. Conclusion 

In this study, it was examined that Lake Urmia, due to its unique climatic conditions and high 

water salinity, is very sensitive to volume and surface changes; because any reduction in the lake's 

volume and area can lead to an increase in salt concentration and intensify the evaporation and 

transpiration processes. Additionally, the existence of a bridge connecting the northern and 

southern parts of the lake has disrupted the natural water circulation and distorted the uniform 

distribution of salinity across the water surface; so that the southern part, due to the accumulation 

of higher salinity water, experiences a higher rate of evaporation and transpiration. Meanwhile, the 

region's climatic changes—including reduced annual rainfall and increased air temperature—play 

a significant role in lowering water levels and increasing salinity, accelerating the gradual drying 

process. Considering the obtained results, prioritizing management of the southern part of Urmia 

Lake seems essential. Controlling salt concentration through the injection of quality water and the 

intelligent management of dam reservoirs can significantly prevent excessive evaporation and stop 

the southern areas from turning into saline wetlands. Additionally, designing and constructing 

water circulation pathways between the northern and southern sections, to achieve hydrological 

balance and prevent salinity concentration, are considered necessary and practical measures. These 

approaches, when implemented, and supplemented by an ongoing, real-time monitoring program 

that tracks changes in salinity and water volume, will optimal conditions for the lake's ecosystem. 

The local communities adjacent to the lake can expect to derive continued social and economic 

benefits from this ecosystem restoration effort. But recent climate and human impacts that have 

driven the lake's decline are not going away. The ongoing use of modern remote sensing tools and 

GIS will ensure that at least the impacts of these tools will be felt in more rigorous and effective 
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management planning. This framework will also ensure that any plans made in this management 

framework will be sustainable. 
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