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Abstract 

Accurate delineation of agricultural land parcels is a key requirement for implementing 

precision agriculture, natural resource management, and the development of Spatial Data 

Infrastructures (SDI). Considering the diversity of planting patterns, vegetation changes, and 

challenges such as occlusions and manual interpretation methods lack sufficient efficacy. In 

recent years, deep learning models have emerged as innovative solutions for extracting parcel 

boundaries from satellite imagery and spatial data due to their high capability in extracting 

complex features and processing large-scale data. This study aims to investigate the role of 

deep learning models in accurately delineating agricultural land parcel boundaries based on the 

analysis of satellite images and spatial data within the framework of Spatial Data Infrastructure 

(SDI). The study focuses on analyzing various deep learning architectures, including 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative 

Adversarial Networks (GANs). These models are evaluated from the perspectives of technical 

structure, input data types, performance metrics, and adaptability to operational challenges in 

precision agriculture. For comparative analysis, a set of recent studies and selected models is 

reviewed regarding accuracy, limitations, and compatibility with real-world conditions such as 

heterogeneous landscapes and scarce labeled data. The results indicate that CNN-based models 

perform well in processing satellite imagery but have limitations in capturing contextual 

dependencies, which can be improved by combining them with RNNs. Additionally, GAN 

models are effective in augmenting training data and generating synthetic images. The findings 

of this study can serve as a foundation for developing more intelligent and hybrid models in 

future SDI and smart agriculture systems. 

 

Keywords: Deep Learning, Satellite Imagery, Smart Agriculture, Convolutional Neural Networks 
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1. Introduction 

In recent years, with significant advancements in information technologies and geographic 

tools, the use of Geographic Information Systems (GIS) and Spatial Data Infrastructure (SDI) 

in agriculture has become a fundamental pillar in resource management and agricultural 

development. One of the fundamental issues in this field is the precise delineation of 

agricultural land parcels, which plays a vital role in proper water resource planning, optimal 

resource allocation, and increasing agricultural productivity. Traditional methods for parcel 

boundary delineation, such as field surveying and processing of aerial photographs and satellite 

images, are often time-consuming, costly, and may not achieve the desired accuracy under 

certain conditions. 

In this context, advanced machine learning techniques, particularly deep learning, have created 

a paradigm shift in this domain. Deep learning models, due to their capability to process 

complex data and hidden patterns in satellite imagery, artificial intelligence, and sophisticated 

simulations, enable more accurate identification and delineation of land parcel boundaries. 

These techniques are especially valuable in precision agriculture, where the need for accurate 

and timely data analysis is critical. They can enhance accuracy and efficiency in boundary 

delineation and agricultural resource management. This article examines the application of 

deep learning in delineating agricultural land parcels within the framework of Spatial Data 

Infrastructure (SDI), analyzing the challenges and benefits of using this technology to improve 

accuracy and agricultural productivity. 

Accurate delineation of agricultural land parcel boundaries plays a crucial role in smart 

agriculture, water resource management, and land optimization. This process provides essential 

information for precision agriculture and helps farmers optimize resource consumption and 

increase crop yield (Dawn et al., 2023). However, traditional methods such as field surveying 

and the processing of aerial photographs and conventional satellite images face various 

challenges. 

While field surveying is effective in some cases, it is time-consuming, expensive, and limited 

to recording fine details of parcel boundaries (Bennett et al., 2020). Additionally, conventional 

image processing methods, such as Object-Based Image Analysis (OBIA), heavily depend on 

segmentation techniques and often lack sufficient accuracy for extracting agricultural parcel 

boundaries (Xia et al., 2018). 

Processing satellite images encounters multiple challenges affecting analysis accuracy and 

model performance. Key challenges include spatial and temporal variability of data, 

atmospheric conditions such as cloud cover or fog, varying resolution of images from different 

sensors, and noise and measurement errors. Furthermore, the large volume of data requires 

powerful storage, processing, and analysis capabilities, which can be time-consuming and 

costly without proper infrastructure. Accurate interpretation of features in heterogeneous areas 

or densely vegetated regions also presents a significant challenge in agricultural, natural 
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resource, or disaster management applications. Moreover, the need for labeled data to train 

machine learning models is another common limitation in this field. 

Artificial intelligence and deep learning have made significant advances in increasing the 

accuracy (e.g., Haery et al., 2024) and reducing the cost of delineating agricultural parcel 

boundaries. For example, models such as U-Net and RCF1 have been used to extract hard and 

soft edges, respectively, enabling more precise identification of agricultural parcels (Xia et al., 

2018). These methods leverage deep learning capabilities to better interpret images and extract 

boundaries. 

Additionally, accurate delineation of agricultural parcel boundaries is key to monitoring crop 

health and growth. Inaccurate boundary delineation can lead to mixing data from adjacent 

fields in remote sensing analyses, such as vegetation indices (e.g., NDVI2), resulting in 

unreliable outcomes. This can negatively impact management decisions like irrigation 

scheduling (e.g., Mahpour and Shafaati, 2024), fertilization, or harvesting. Therefore, precise 

boundary extraction is a fundamental step in effective precision agriculture and intelligent crop 

monitoring. AI-based solutions have improved crop monitoring accuracy and health 

assessment by 30 to 50 percent and enhanced resource-based decision-making (Hoque & 

Padhiary, 2024). Deep learning models such as YOLOv53 have demonstrated successful 

performance in identifying and classifying agricultural products (Ram et al., 2023). 

Overall, although traditional methods have limitations in accurate parcel boundary delineation, 

artificial intelligence and deep learning offer promising solutions. These technologies not only 

improve accuracy but also reduce time and costs, contributing to the optimization of smart 

agriculture. 

2. Literature Review 

Convolutional Neural Networks (CNNs) have demonstrated remarkable success in processing 

satellite images for various tasks, including land boundary detection. CNNs excel at extracting 

high-level features from images, making them particularly effective for spatial data analysis. 

In the field of remote sensing, CNNs have shown strong capabilities in feature representation, 

leading to improved scene classification of satellite imagery (Liu et al., 2019). 

Compared to other deep learning models, CNNs have both advantages and limitations. While 

CNNs are effective at processing local regions of images, they lack the ability to capture long-

range contextual dependencies across different image areas (Zuo et al., 2016). Recurrent Neural 

Networks (RNNs), on the other hand, are designed to capture sequential dependencies and can 

be useful for encoding spatial dependencies in satellite imagery (Zuo et al., 2015; Zuo et al., 

2016). The combination of CNNs and RNNs, often referred to as Convolutional Recurrent 

 
1 Richer Convolutional Features 
2 Normalized Difference Vegetation Index 
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Neural Networks (C-RNNs), has proven successful in learning spatial dependencies between 

image regions and enhancing feature discrimination within image representations (Zuo et al., 

2015; Zuo et al., 2016). 

Generative Adversarial Networks (GANs) offer a different approach to satellite image analysis. 

Although GANs have not been directly compared with CNNs for land boundary detection, they 

have been explored in remote sensing applications to overcome challenges related to limited 

data availability (Logan et al., 2021). GANs can generate synthetic satellite images that 

potentially augment training datasets and improve model performance in scenarios with scarce 

data. 

In summary, while CNNs perform well in processing satellite images for tasks such as land 

boundary detection, combining them with other deep learning models like RNNs can yield 

better results by capturing both local and contextual information. The choice of model depends 

on the specific task requirements, available data, and computational resources. Future research 

may focus on developing hybrid models that leverage the strengths of multiple architectures to 

optimize performance in satellite image analysis (Teixeira et al., 2023). 

This section provides a comparative review of deep learning models presented in recent studies 

related to agricultural land segmentation. The focus is on evaluating the strengths, limitations, 

and real-world adaptability of these models, particularly in heterogeneous landscapes, noisy 

backgrounds, and limited labeled data scenarios. Table 1 summarizes the key characteristics of 

these models. 

Table 1. Review of recent studies on deep learning methods for land parcel and vegetation segmentation 

from remote sensing images. 

Article Model Strengths Weaknesses 
Real-World 

Compatibility 
Reference 

Local refinement 

mechanism for 

improved plant leaf 

segmentation in 

cluttered 

backgrounds 

U-Net-based 

model with 

local 

refinement 

mechanism 

High accuracy in 

leaf 

segmentation in 

greenhouses; use 

of Gaussian and 

High-Boost 

filters 

Sensitive to 

image blur and 

occlusion; 

requires precise 

labeled data 

Performs well in 

greenhouse 

conditions; needs 

improvement for 

field conditions 

Ma et al., 

2023 

Development of 

Semantic Maps of 

Vegetation Cover 

from UAV Images to 

Support Planning 

and Management in 

Fine-Grained Fire-

Prone Landscapes 

CNNs for 

shrub 

detection 

Ability to detect 

vegetation cover 

in heterogeneous 

landscapes 

Performance 

depends on the 

quality of labeled 

data 

General capability 

in complex 

landscapes, but 

sensitive to input 

data quality 

Trenčanová et 

al., 2022 

Enabling Multi-Part 

Plant Segmentation 

with Instance-Level 

Weakly 

supervised 

learning and 

Addresses object 

overlap issues; 

uses semi-

Time-consuming 

multi-part 

Suitable for low-

labeled data areas; 

Mukhamadiev 

et al., 2023 
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Article Model Strengths Weaknesses 
Real-World 

Compatibility 
Reference 

Augmentation Using 

Weak Annotations 

pseudo-

labeling 

automatic 

labeling 

labeling requires 

semi-labeled data 

needs further 

optimization 

Improved random 

forest classification 

model combined 

with the C5.0 

algorithm for 

vegetation feature 

analysis in non-

agricultural 

environments 

Object-based 

Random 

Forest for 

forest 

classification 

94.02% accuracy 

on aerial data; 

strong in 

vegetation 

discrimination 

Designed for 

forests, not 

specific 

agricultural lands 

Performs well in 

diverse vegetation 

cover landscapes 

Wang, 2024 

Improvement in 

Land Cover and 

Crop Classification 

based on Temporal 

Features Learning 

from Sentinel-2 Data 

Using Recurrent-

Convolutional 

Neural Network (R-

CNN) 

CNN + RNN 

hybrid (Pixel 

R-CNN) 

96.5% accuracy 

in crop 

classification 

using Sentinel-2 

data 

Focuses on crop 

classification, not 

boundary 

segmentation 

Compatible with 

multi-temporal 

satellite images 

Mazzia et al., 

2019 

A Futuristic Deep 

Learning Framework 

Approach for Land 

Use-Land Cover 

Classification Using 

Remote Sensing 

Imagery 

Multi-spectral 

bands, 

topography, 

and texture 

fusion 

89.43% accuracy 

in land use 

mapping 

Not specifically 

designed for land 

parcel boundary 

detection 

Capable of working 

with diverse data 

sources 

Nijhawan et 

al., 2018 

Deep Learning for 

Feature-Level Data 

Fusion: Higher 

Resolution 

Reconstruction of 

Historical Landsat 

Archive 

GAN for 

spatial 

resolution 

enhancement 

Improves the 

resolution of 

historical 

Landsat data to 

Sentinel-2 

quality 

Focused on 

image 

reconstruction, 

not segmentation 

Enhances input data 

quality for 

downstream models 

Chen et al., 

2021 

Deep Learning 

Classification of 

Land Cover and 

Crop Types Using 

Remote Sensing 

Data 

Self-

supervised 

learning 

combined 

with CNN 

Detects crop 

types from 

Landsat-8 and 

Sentinel-1A data 

Suitable for crop 

classification, not 

boundary 

segmentation 

Performs well on 

multisensor data 

Kussul et al., 

2017 

Convolutional 

Neural Networks 

enable efficient, 

accurate, and fine-

grained segmentation 

of plant species and 

Analysis of 

high-

resolution 

RGB UAV 

images 

High accuracy in 

identifying 

specific plant 

species 

Requires UAV 

data, which can 

be limited 

Suitable for precise 

local-scale 

vegetation mapping 

Kattenborn et 

al., 2019 
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Article Model Strengths Weaknesses 
Real-World 

Compatibility 
Reference 

communities from 

high-resolution UAV 

imagery 

According to the table above, some models, such as the U-Net-based approach with local 

refinement, achieve precise leaf segmentation under greenhouse conditions (Ma et al., 2023). 

CNNs have shown good capability in detecting vegetation in heterogeneous landscapes 

(Trenčanová et al., 2022). Weakly supervised learning models are effective in overcoming 

object overlap challenges and reducing the need for fully labeled data (Mukhamadiev et al., 

2023). Object-based Random Forest models also achieve high accuracy in forest classification 

(Wang, 2024). 

On the other hand, limitations are evident in these studies. For example, some models perform 

poorly under image blur or occlusion conditions (Ma et al., 2023). Lack of sufficient labeled 

data reduces model accuracy, especially for tasks requiring multi-part or semi-automatic 

labeling ((Mukhamadiev et al., 2023), (Trenčanová et al., 2022)). Models like Pixel R-CNN, 

while successful in crop classification, are not specifically designed for agricultural land 

boundary delineation (Mazzia et al., 2019). Another challenge is adapting to complex 

landscapes and diverse vegetation covers. Although some models show general robustness, 

there remains a need for improvement to handle real-world heterogeneous data effectively 

((Wang, 2024), (Kattenborn et al., 2019)). 

Although the reviewed models have made significant advances in vegetation cover 

classification and agricultural land use mapping, most of them are not specifically designed for 

the delineation of agricultural plot boundaries. This gap highlights the need to develop models 

explicitly aimed at parcel boundary detection. Additionally, applying techniques such as 

weakly supervised learning, image super-resolution (Chen et al., 2021), and multimodal data 

fusion could enhance model performance under real-world conditions. 

3. Theoretical Framework 

Based on the butterfly model of Spatial Data Infrastructure (SDI), the agricultural cadastre is 

considered the primary source of spatial and descriptive data related to agricultural land 

parcels. These data include field boundaries, types and intensity of land use, ownership, and 

land use classifications. When integrated within the SDI framework, these data can be 

combined with other layers such as topographic maps, climate data, water resources, and 

agricultural infrastructure, thereby providing a unified platform for analysis, decision-making, 

and policymaking (Williamson et al., 2010). 

Within this model, SDI acts as a bridge between cadastral data and land management systems. 

Through this infrastructure, the spatially enabled government can deliver various services such 
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as land use planning, resource management, facilitation of public services, and monitoring of 

sustainable development based on geospatial data. Therefore, the agricultural cadastre is not 

only a tool for registering and maintaining parcel information, but within the SDI framework, 

it becomes a key instrument for sustainable agricultural development, more efficient resource 

utilization, and improved land governance. 

Given the need for spatial data processing and analysis in agricultural cadastre, particularly in 

the automated delineation of parcel boundaries, the application of emerging technologies such 

as Artificial Intelligence (AI) and Deep Learning becomes crucial. These technologies are 

foundational to advancements in precision agriculture, especially in delineating field 

boundaries. 

AI refers to the development of computer systems capable of performing tasks that typically 

require human intelligence (Sharma, 2021). In agriculture, AI is used for a range of 

applications, including disease detection, plant classification, and smart irrigation (Ünal, 2020) . 

Deep Learning, a subfield of AI, uses artificial neural networks to uncover hidden patterns in 

unlabeled and unstructured data without human intervention (Ünal, 2020). Among these, 

Convolutional Neural Networks (CNNs) have shown remarkable ability in analyzing 

agricultural images obtained from satellites, aerial vehicles, and ground-based cameras (El 

Sakka et al., 2024). 

Accurate delineation of field boundaries is critical for precision agriculture, as it enables 

farmers to optimize resource management, enhance crop health, and increase productivity (El 

Sakka et al., 2024), (Kujawa & Niedbała, 2021)(. The significance of these technologies in 

precision farming lies in their ability to process vast amounts of data collected throughout the 

growing season, support decision-making systems, and optimize various aspects of agriculture 

(Wang, 2024). These technologies help develop smart agricultural systems that make 

agriculture more efficient and effective by utilizing advanced information technologies (Ünal, 

2020). These capabilities are especially important in addressing global challenges such as 

population growth and limited agricultural land expansion (Sharma, 2021). 

Therefore, AI, deep learning, and field boundary delineation are key components of precision 

agriculture, enabling farmers to make data-driven decisions, optimize resource use, and 

enhance overall productivity. As these technologies advance, their role in addressing food 

security challenges and promoting sustainable agriculture is expected to grow increasingly 

prominent ((Glady et al., 2024), (Padhiary & Kumar, 2025)). 

This study's theoretical framework focuses on three major model categories, each with specific 

theoretical and technical foundations for spatial and image data analysis: 

3.1. Convolutional Neural Networks (CNNs) 

CNNs utilize architectures inspired by human vision and extract spatial and spectral features 

from images using convolutional layers. They are particularly effective in identifying objects, 



 

Babaei and Fallahi                                                           Interdisciplinary Journal of Civil Engineering 

 

160 

boundaries, and complex patterns in satellite imagery. Architectures such as U-Net, SegNet, 

and 2D/3D CNNs have proven highly effective for pixel-wise classification and delineation of 

agricultural features. 

CNNs have emerged as powerful tools in satellite image analysis for agricultural applications, 

playing a critical role in accurate boundary detection of land parcels. They have demonstrated 

exceptional performance in analyzing images from satellites, UAVs, and terrestrial cameras (El 

Sakka et al., 2024). By leveraging vegetation indices and multispectral imagery, CNNs enhance 

analytical capabilities and contribute to improved agricultural outcomes. Notably, hybrid 3D-

2D CNN models have shown superior performance in extracting spatial and spectral features 

from high-resolution satellite images, achieving up to 95.6% classification accuracy for land 

cover, outperforming traditional machine learning algorithms such as SVM and RF (Saralioglu 

& Gungor, 2022). 

Interestingly, although very deep CNNs are structurally complex and require extensive training 

data, some studies have proposed efficient and lightweight architectures that outperform well-

known models like GoogleNet and SqueezeNet in classifying wetland areas (Jamali et al., 

2021). 

Consequently, CNNs—especially 3D/2D models and optimized architectures—are among the 

most effective tools for satellite image analysis in agricultural applications. These models 

outperform traditional methods in accurately identifying field boundaries by extracting high-

resolution spatial and spectral features. Integrating CNNs with techniques such as data 

augmentation, transfer learning, and multimodal fusion further enhances their performance in 

tasks like crop classification and land use mapping (Teixeira et al., 2023). 

 

 

Figure 1. Basic structure of a convolutional neural network (CNN) for analyzing satellite images in 

precision agriculture. Adapted from (Phung & Rhee, 2019) 
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The basic CNN architecture image includes convolution, pooling, and fully connected layers 

designed to extract local features from images. CNNs, with their high ability to extract spatial 

features from satellite images, are an effective tool for identifying and determining agricultural 

land boundaries. Studies have shown that the use of CNNs in this field has higher accuracy 

than traditional methods. 

3.2. Recurrent Neural Networks (RNNs) 

RNNs are designed for processing sequential data such as text, speech, or time series. Their 

key feature is the ability to retain previous information through feedback loops, allowing them 

to model temporal dependencies in data. These networks are widely used in applications like 

machine translation, speech recognition, and sentiment analysis. 

 

Figure 2. CNN-RNN Hybrid Architecture. Adapted from (Mekruksavanich & Jitpattanakul, 2021) 

The architecture of the combined CNN-RNN model illustrates the integration of two types of 

neural networks: Convolutional Neural Networks (CNNs) for extracting spatial features from 

imagery, and Recurrent Neural Networks (RNNs) for modeling temporal dependencies within 

the data. In this framework, the CNN component initially extracts spatial representations from 

satellite images, which are subsequently processed by the RNN to capture temporal dynamics. 

In the context of precision agriculture, delineating agricultural parcel boundaries is of critical 

importance. Multitemporal satellite imagery enables the observation of land cover changes 

over time. The hybrid CNN-RNN architecture leverages the spatial feature extraction 

capabilities of CNNs and the temporal modeling capabilities of RNNs, facilitating more 

accurate and stable boundary detection of agricultural fields. 
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Consequently, the application of CNN-RNN hybrid architectures in satellite image analysis for 

agricultural parcel boundary extraction significantly enhances both the accuracy and efficiency 

of the process by jointly exploiting spatial and temporal information.  

3.3. Generative Adversarial Networks (GANs) 

GANs consist of two distinct neural networks: a generator that produces new data and a 

discriminator that attempts to distinguish real from generated data. Through this adversarial 

process, the quality of the generated data improves significantly. GANs are widely used for 

realistic image generation, data augmentation, and style transfer. 

 

Figure 3. General Architecture of a Generative Adversarial Network (GAN). Adapted from (Alqahtani et 

al., 2019) 

GANs can generate realistic synthetic images, which expand the training dataset—especially 

useful when real data is scarce. This capability contributes to improving the accuracy of 

boundary delineation models in agricultural land monitoring. 

3.4. Deep Learning Strategies for Agricultural Parcel Boundary Delineation 

Deep learning models, spatial data, and satellite imagery act synergistically to improve the 

accuracy and efficiency of agricultural field boundary detection. Research in this domain can 

be categorized into four main strategies: 

1. Complex Feature Extraction Using CNNs 

CNNs, due to their hierarchical structure, can detect spatial and spectral patterns at 

various levels. This makes them highly effective in delineating fine boundaries of land 

parcels. However, they may struggle with long-range dependencies and non-local 

contextual relations—especially in landscapes with similar vegetation types belonging 

to different parcels. Combining CNNs with LSTM or attention mechanisms can address 

these limitations and enhance boundary delineation performance ((Adegun et al., 2023), 

(Teixeira et al., 2023), (Zhang et al., 2020)). 

2. Multi-Branch Architectures for Complex Image Analysis 
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Multi-branch architectures use separate pathways to analyze local, contextual, and 

textural features, enabling them to better model the complexity of agricultural imagery 

(Khan & Basalamah, 2023). These models process data at multiple scales and 

effectively extract boundaries despite object overlap and varying shapes. Fusion 

mechanisms using attention improve accuracy significantly, especially in noisy or 

cluttered backgrounds. 

3. Multimodal Approaches Using Diverse Data 

Integrating various data types (spectral, spatial, biophysical, climatic) provides a more 

comprehensive view of agricultural landscapes. Such data, often from different sources 

and resolutions, pose challenges like alignment and spectral matching. Success in this 

domain relies on models’ ability to extract meaningful features from heterogeneous data 

while minimizing noise and redundancy (Alipour et al., 2023). 

4. Accuracy Enhancement Through Attention and Residual Structures 

Models using attention mechanisms and residual structures—such as RAANet4—

achieve high accuracy in land use classification from remote sensing data (Liu et al., 

2022). These techniques enable the model to focus adaptively on important regions, 

improving classification while reducing network complexity. Despite their 

computational demands, such models are particularly effective in analyzing noisy or 

asymmetric agricultural plots. 

Integrating deep learning models with data-centric frameworks like SDI offers new pathways 

for developing automated systems in the agricultural cadastre. This contributes significantly to 

advancing precision agriculture and optimizing land management. 

4. Research Methodology 

This study is a review and analytical research conducted to examine the role and effectiveness 

of deep learning models in delineating the boundaries of agricultural land parcels based on 

satellite imagery analysis and geospatial data, within the framework of Spatial Data 

Infrastructure (SDI). Drawing on credible scientific sources, the research aims to analyze and 

explain the application of modern deep learning architectures in land parcel boundary 

extraction and their contribution to smart agriculture development. 

The methodology adopts a descriptive-analytical approach using library and documentary 

resources. The main focus is on theoretical analysis of the structure of deep learning models, 

their advantages, limitations, types of input data, performance indicators, and accuracy levels 

in applications related to precision agriculture and land management. The study particularly 

examines models such as Convolutional Neural Networks (CNNs), multi-branch frameworks, 

and models equipped with attention mechanisms. 

 
4 Residual ASPP with Attention Net 
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The research process began with the collection of scientific sources, including peer-reviewed 

journal articles, technical reports, and empirical findings from prior studies. The selected 

models were then comparatively analyzed based on criteria such as technical structure, type of 

data used, relevance to boundary delineation, and performance evaluation metrics. 

Comparative tables were used to summarize key characteristics and illustrate the differences 

and similarities among the models. 

Three widely used deep learning models for delineating agricultural field boundaries are 

analyzed in this study: 

 

• Convolutional Neural Networks (CNNs) 

• Recurrent Neural Networks (RNNs) 

• Generative Adversarial Networks (GANs) 

 

These models were selected based on criteria such as reported accuracy, adaptability to various 

conditions, availability of training data, and scalability. Due to their broad applicability, 

successful performance in remote sensing tasks, and interoperability with other architectures, 

these models were chosen as the central focus of this analysis. In the following sections of the 

paper, they are examined in the context of the theoretical framework and their integration with 

SDI. 

 

Figure 4. Illustration of the overall workflow of the study, from literature collection to theoretical analysis 

of SDI and the selected deep learning models . 

CNNs have demonstrated remarkable success in satellite image processing tasks, including 

land boundary detection. They possess strong capabilities for extracting high-level spatial 

features, making them particularly effective for geospatial data analysis (Liu et al., 2019). In 
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remote sensing, CNNs have shown robust performance in object representation and have 

improved scene classification accuracy (Liu et al., 2019). 

However, compared to other deep learning models, CNNs have both strengths and limitations. 

While CNNs are effective in processing local image regions, they often lack the ability to 

capture contextual dependencies between different parts of the image (Zuo et al., 2015). This 

is where RNNs can complement CNNs. Designed to learn sequential dependencies, RNNs can 

be beneficial for encoding spatial relationships in satellite imagery. The integration of CNNs 

and RNNs, known as Convolutional Recurrent Neural Networks (C-RNNs), has proven 

successful in learning spatial dependencies across image regions, enhancing object 

segmentation and boundary detection ((Zuo et al., 2015),(Zuo et al., 2016)). 

GANs, on the other hand, offer a different approach to satellite image analysis. Although not 

directly compared with CNNs for land boundary detection, GANs have been explored in 

remote sensing to address limited data availability (Logan et al., 2021). GANs are capable of 

generating synthetic satellite images, potentially expanding training datasets and improving 

model performance in scenarios where labeled data are scarce. 

In conclusion, while CNNs are effective in processing satellite images for boundary detection 

tasks, their combination with other deep learning architectures, such as RNNs, can yield 

improved outcomes by capturing both local and contextual information. Model selection 

should be tailored to the specific task requirements, data availability, and computational 

resources. Future research may focus on developing hybrid models that leverage the strengths 

of multiple architectures to optimize satellite image analysis (Teixeira et al., 2023). 

Throughout this study, credible academic sources were reviewed to evaluate deep learning 

models in terms of structure, analytical capabilities, limitations, and suitability for geospatial 

data in smart agriculture. The findings provide valuable guidance for future research aimed at 

designing efficient and integrated models within the SDI framework and intelligent agricultural 

systems. 

5. Results 

5.1. Analysis of Core Deep Learning Models 

Table 1 compares three main deep learning models—Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), and Generative Adversarial Network (GAN)—in terms of 

their strengths, limitations, and compatibility with real-world conditions for delineating 

agricultural land parcel boundaries using satellite imagery and geospatial data: 
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Table 2. Comparative analysis of CNN, RNN, and GAN deep learning models in terms of strengths, 

limitations, and real-world applicability for agricultural parcel boundary delineation 

Deep Learning 

Model 
Strengths Limitations 

Compatibility with 

Real-World Conditions 

CNN (Convolutional 

Neural Network) 

- High accuracy in extracting 

spatial and local features from 

satellite images- Strong 

performance in precise 

classification and boundary 

detection- Stable results with 

high-resolution data 

- Inability to capture contextual 

and sequential dependencies 

across image regions- Reduced 

accuracy when dealing with 

heterogeneous and variable data- 

High dependency on labeled 

datasets 

- Suitable for environments 

with high-quality and 

relatively uniform data- Less 

effective for diverse datasets 

or time-series data 

RNN (Recurrent 

Neural Network) 

- Captures temporal and 

contextual dependencies in 

sequential and time-series data- 

Enhances spatiotemporal analysis 

in satellite imagery- A 

complementary approach to CNN 

limitations 

- Requires large and well-

ordered sequential datasets- 

High computational complexity 

and training time- Sensitive to 

noise and disordered data 

- Suitable for applications 

involving temporally and 

spatially sequenced data- 

Less effective in 

environments with limited or 

unstructured data 

GAN (Generative 

Adversarial Network) 

- Generates realistic synthetic 

data to augment training datasets- 

Reduces reliance on labeled data 

by increasing data diversity- Can 

improve the quality of hybrid 

models 

- Complex training process 

requiring careful parameter 

tuning- Risk of generating 

unrealistic or inconsistent data if 

not properly trained- Indirect 

application in boundary 

extraction (mainly for data 

augmentation) 

- Effective under conditions 

of data scarcity, enhancing 

model generalization- 

Requires strong 

computational resources and 

careful model supervision 

5.2. Evaluation of Hybrid Models 

Hybrid models, such as C-RNN and CNN-GAN combinations, have also been analyzed for 

their ability to improve accuracy under diverse conditions, including variations in vegetation 

types, parcel sizes, and data quality. Results suggest that hybrid models can reduce reliance on 

labeled data and provide more accurate performance in complex and heterogeneous 

environments. 

5.3. Data Quality and Study Reliability 

Given the nature of this study, which is based on a systematic review and comparative analysis 

of credible research in the field of agricultural parcel delineation using deep learning 

algorithms, the evaluation and validation process is analytical and grounded in scientific 

criteria. 

The datasets used in the analyzed studies are mainly derived from reputable remote sensing 

sources such as Sentinel-2, Landsat-8, and high-resolution imagery, contributing to the 

credibility of the findings. Consequently, the results of this review provide a reliable foundation 
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for developing intelligent models within Spatial Data Infrastructure (SDI) frameworks for 

precision agriculture applications. 

5.4. Proposed Analytical Framework 

By identifying the strengths and limitations of the reviewed models, this study offers an 

analytical framework for selecting the most appropriate algorithm based on data conditions, 

land type, and specific goals in agricultural land management systems. This framework may 

serve as a foundation for future research on the development of localized models within SDI-

based smart agriculture environments. 

6. Conclusion 

 In recent years, the application of deep learning in analyzing satellite imagery, especially for 

the precise delineation of agricultural field boundaries, has witnessed significant growth. 

Challenges such as landscape heterogeneity, variability in cropping patterns, and the scarcity 

of labeled data have highlighted the limitations of traditional methods. In response, advanced 

deep learning models offer promising solutions to overcome these barriers. 

Among various approaches, three major deep learning architectures have received the most 

attention: 

Convolutional Neural Networks (CNNs) 

Recurrent Neural Networks (RNNs) 

Generative Adversarial Networks (GANs) 

The following table (Table 2) presents a comprehensive comparison of these architectures, 

clarifying their strengths, weaknesses, and specialized applications in the context of 

agricultural remote sensing and boundary extraction. 

The combination of spatial data, satellite imagery, and advanced deep learning techniques leads 

to improved accuracy and efficiency in delineating agricultural land boundaries. This synergy 

enhances feature extraction, enables better handling of complex landscapes, supports effective 

data integration, and ultimately yields more reliable results in mapping and monitoring 

agricultural areas. 

Table 3. Comparative Analysis of Deep Learning Models (CNN, RNN, and GAN) in Agricultural Land 

Parcel Boundary Delineation Using Satellite Imagery and Geospatial Data 

Feature / 

Criterion 

CNN (Convolutional 

Neural Network) 

RNN (Recurrent 

Neural Network) 

GAN (Generative 

Adversarial Network) 

Appropriate Input 

Data 

Images, especially 2D imagery 

such as satellite data 

Sequential and time-series 

data with temporal 

dependencies 

Image data, suitable for 

generating synthetic and 

augmented data 
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Feature Extraction 

Capability 

High-level and local feature 

extraction (e.g., edges, 

textures) 

Temporal and contextual 

dependency encoding 

between sequential data 

Generation of new data 

samples similar to real data; 

data augmentation 

Contextual 

Dependency 

Modeling 

Limited to local features only Strong; capable of capturing 

long-term and contextual 

dependencies 

Capable of generating 

diverse data, but not 

designed for dependency 

modeling 

Primary Application 

in Remote Sensing 

Scene classification, land 

boundary extraction, spatial 

data analysis 

Complementary to CNN for 

modeling spatial/temporal 

dependencies 

Augmentation of training 

data, generation of high-

fidelity synthetic imagery 

Limitations Inability to model extended 

dependencies within images 

Requires structured 

sequential data; complex 

training 

Challenging training and 

convergence require quality 

initial data 

Role in Hybrid 

Architectures 

Foundation of image 

processing; core feature 

extractor 

Complementary component 

for contextual encoding; 

enhances CNN models 

Enhances data diversity; 

supports robust training of 

other models 

Implementation in 

Precision 

Agriculture 

Accurate boundary delineation, 

vegetation classification, and 

texture analysis 

Temporal-spatial change 

analysis, contextual 

encoding across land units 

Data synthesis to mitigate the 

limited labeled samples in 

agricultural datasets 

Computational 

Requirements 

Medium to high (depending on 

network depth) 

High (depending on 

sequence length and 

network complexity) 

Very high (due to 

simultaneous training of 

generator and discriminator) 

Future Development 

Potential 

Enhancement via integration 

with RNNs and other networks 

Development of CNN-RNN 

hybrid models for improved 

spatial encoding 

Advancement of more stable 

and spatially-aware GAN 

models for geospatial data 

In this study, the roles and applications of deep learning algorithms—specifically CNNs, 

RNNs, and GANs—in delineating the boundaries of agricultural land parcels using satellite 

imagery and geospatial data were reviewed. The findings from reviewed studies show that, 

especially when used in combination, these models have significantly improved boundary 

detection accuracy compared to traditional and even classical machine learning approaches. 

Integrating these models within the Spatial Data Infrastructure (SDI) framework facilitates 

smart agriculture optimization, land and water resource management, and data-driven 

planning. Moreover, combining deep learning models with spatial databases can contribute to 

the development of intelligent decision-support systems in agriculture. 

Overall, this research indicates that the development of hybrid, multi-architecture models using 

multi-source data provides an effective pathway to address current challenges in agricultural 

boundary delineation within the SDI environment. Future studies are encouraged to focus on 

lightweight, cost-effective hybrid models that are adaptable to diverse and localized spatial 

data. Such research directions could significantly contribute to the advancement of smart 

agricultural infrastructure and sustainable natural resource management. 
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Based on the comparative analysis, CNNs demonstrate strong performance in extracting local 

spatial features from satellite imagery, especially in accurately classifying objects and 

identifying field boundaries. However, their inability to capture global or sequential 

dependencies across image regions limits their interpretive capacity. RNNs, designed 

specifically to handle sequential and contextual relationships, effectively address this 

limitation. The combination of CNN and RNN (i.e., C-RNN) can significantly enhance the 

accuracy of feature identification in complex and heterogeneous landscapes. 

On the other hand, while GANs are not directly designed for boundary extraction, they play a 

crucial role in augmenting training datasets by generating highly realistic synthetic images. 

This improves the performance of deep learning models by compensating for the lack of 

labeled training data. 

In conclusion, no single model can be considered the optimal choice in all scenarios, as model 

selection depends on data characteristics, task requirements, and available computational 

resources. However, for the specific task of delineating agricultural boundaries using satellite 

imagery, C-RNN models—combining the spatial strength of CNNs with the contextual 

awareness of RNNs—stand out as a balanced and effective approach. In parallel, the use of 

GANs as a complementary tool for training data enhancement can further boost the 

performance of such hybrid models. 

Thus, a forward-looking strategy in this domain involves the development and implementation 

of multi-stage, hybrid models that integrate deep learning, data generation, and advanced 

geospatial analysis into a unified framework. 
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