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Abstract: 

Land use change detection is critical for sustainable environmental management, yet uncertainties 

from noise, mixed pixels, and spectral similarities challenge its accuracy. This study conducts a 

comparative analysis of classical machine learning methods—Support Vector Machines, Random 

Forests, and Maximum Likelihood classifiers—and modern approaches, specifically 

Convolutional Neural Networks and Bayesian Neural Networks, to evaluate their efficacy in 

managing uncertainty across urban, agricultural, and aquatic contexts. Utilizing global and Iranian 

case studies, the research assesses performance metrics, including accuracy, uncertainty 

management, and computational complexity, through quantitative and qualitative syntheses. 

Findings reveal that modern methods outperform classical approaches, with Convolutional Neural 

Networks achieving 90–95% accuracy and Bayesian Neural Networks reaching 91.85% in urban 

settings, driven by robust feature extraction and probabilistic uncertainty quantification. Classical 

methods, while less accurate (65–92%), offer computational efficiency, making them viable in 

resource-constrained regions. The study highlights practical implications for Iran’s urban and 

agricultural monitoring and global sustainability goals, proposing hybrid approaches and multi-

modal data integration to balance accuracy and accessibility. Despite their potential, challenges 

such as computational intensity, data scarcity, and model interpretability persist, necessitating 

future research into lightweight algorithms, semi-supervised learning, and explainable artificial 

intelligence. This analysis advances the field by providing a framework for method selection, 

enhancing the reliability of land use change detection for environmental policy and resource 

management. 
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1.Introduction 

Land use change detection plays an essential role in monitoring and managing the Earth's dynamic 

landscapes, offering critical insights into processes such as deforestation, urban sprawl, and 

agricultural development. These changes have profound implications for sustainable resource 

management and environmental conservation, enabling stakeholders to address challenges like 

biodiversity loss and climate change (Turner et al., 2007). Central to this field is the use of satellite 

imagery, which provides extensive, repeatable data over vast geographic areas. However, the 

reliability of land use change detection is often undermined by uncertainty—a multifaceted issue 

inherent in remote sensing data that arises from factors such as sensor limitations, atmospheric 

interference, and algorithmic imperfections (Foody, 2010). Effectively managing this uncertainty 

is vital to ensuring accurate analyses and supporting sound environmental decision-making. 

In the context of remote sensing, uncertainty refers to the degree of doubt surrounding the accuracy 

or validity of derived information, such as land cover classifications. Sources of uncertainty 

include sensor noise, which may distort pixel values; atmospheric conditions like cloud cover, 

which can obscure features; and errors in data processing, such as misclassification of complex or 

transitional land cover types (Olofsson et al., 2014). These challenges are particularly acute in 

heterogeneous landscapes, where subtle differences between classes—like urban and peri-urban 

zones—can lead to significant errors. When unaddressed, uncertainty propagates through models 

and maps, potentially skewing policy decisions or resource management strategies. As satellite 

data grows in volume and complexity, the need for robust methods to mitigate these issues becomes 

increasingly urgent. 

Machine learning (ML) has emerged as a transformative tool for interpreting satellite imagery and 

tackling uncertainty in land use change detection. Classical ML techniques, such as Support Vector 

Machines (SVM), Random Forests (RF), and Maximum Likelihood classifiers, have long been 

employed for their ability to process multidimensional data and deliver reliable results in 

controlled settings (Huang et al., 2002). Yet, these methods often falter when confronted with noisy 

or ambiguous datasets. In contrast, modern ML approaches—such as Convolutional Neural 

Networks (CNNs) and Bayesian models—offer advanced capabilities, including the extraction of 

spatial patterns and probabilistic uncertainty estimation (Ma et al., 2019; Chen et al., 2020). These 

innovations hold promise for improving classification accuracy and resilience against real-world 

data challenges. 

This study seeks to compare classical and modern ML approaches in managing uncertainty within 

land use change detection. By analyzing their performance across diverse contexts—spanning 

urban, agricultural, and natural landscapes—we aim to determine which methods best enhance the 

precision and reliability of remote sensing outputs. The research not only contributes to the 

evolution of ML applications in environmental science but also has practical implications for 

policymakers and practitioners who rely on accurate land use data to address global sustainability 

challenges. 

2. Literature Review 
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Land use change detection is a cornerstone of environmental science, enabling researchers and 

policymakers to monitor transformations in the Earth's surface, such as deforestation, urban 

expansion, and shifts in agricultural practices. These changes have profound implications for 

biodiversity, climate regulation, and sustainable resource management, making accurate detection 

critical for informed decision-making (Turner et al., 2007). Satellite imagery, provided by 

platforms like Landsat and Sentinel, offers extensive spatial and temporal data, facilitating the 

analysis of land use dynamics. However, the reliability of these analyses is often compromised by 

uncertainties arising from sensor limitations, atmospheric conditions, and algorithmic 

imperfections (Foody, 2010). The application of machine learning (ML) has transformed land use 

change detection, offering tools to mitigate these uncertainties. This review explores the evolution 

of ML approaches, from classical methods like Support Vector Machines (SVM), Random Forests 

(RF), and Maximum Likelihood classifiers to modern techniques such as Convolutional Neural 

Networks (CNNs) and Bayesian models, assessing their strengths, limitations, and contributions 

to managing uncertainty. 

The significance of land use change detection lies in its ability to inform sustainable development 

and environmental conservation. Turner et al. (2007) argue that land change science integrates 

remote sensing with ecological and social perspectives, providing a holistic understanding of 

global environmental challenges. Satellite imagery has become indispensable due to its ability to 

capture large-scale changes over time, but its effectiveness depends on overcoming uncertainties 

that undermine classification accuracy. Foody (2010) identifies key sources of uncertainty, 

including sensor noise, which distorts pixel values; atmospheric interference, such as clouds and 

aerosols; and imperfect ground reference data, which complicates validation. Olofsson et al. (2014) 

emphasize the need for robust sampling designs and error matrices to quantify uncertainty, noting 

that mixed pixels—where a single pixel encompasses multiple land cover types—pose significant 

challenges, particularly in heterogeneous landscapes. These issues can propagate through models, 

skewing results and affecting policy decisions. As the volume and complexity of satellite data 

increase, advanced ML methods have become essential for addressing these challenges. 

Classical ML methods have historically dominated land use change detection, offering automated 

and reliable solutions for classifying satellite imagery. Support Vector Machines, introduced as a 

powerful supervised learning algorithm, excel in high-dimensional spaces by finding the optimal 

hyperplane to separate classes (Huang et al., 2002). Huang et al. (2002) demonstrated SVM’s 

superior accuracy over traditional classifiers for land cover classification using Landsat imagery, 

particularly in complex landscapes. In an Iranian context, Rezaei et al. (2021) combined SVM with 

a binary gravitational search algorithm to classify polarimetric radar images, achieving high 

accuracy in urban settings. However, they noted SVM’s sensitivity to noise and parameter 

selection, which can degrade performance in datasets with significant distortions. Random Forests, 

an ensemble method of decision trees, are renowned for their robustness and ability to handle 

heterogeneous data (Thanh Noi & Kappas, 2018). Thanh Noi and Kappas (2018) compared RF 

with SVM and k-Nearest Neighbor for Sentinel-2 imagery, finding that RF performs consistently 

across parameter settings, making it accessible to users with varying expertise. Tikuye et al. (2023) 

applied RF to detect land use changes in Ethiopia’s Upper Blue Nile River Basin, confirming its 

effectiveness in diverse environmental conditions. Despite these strengths, RF’s computational 

intensity can be a barrier when processing large datasets. 
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Maximum Likelihood classifiers, rooted in Bayesian probability, assign pixels to classes based on 

statistical likelihood, assuming a multivariate normal distribution (Akhbari et al., 2006). Akhbari 

et al. (2006) highlighted the simplicity and efficiency of this method for satellite image 

classification, making it suitable for straightforward applications. However, Yousefi et al. (2011) 

evaluated its performance in Noor County, Iran, finding that while it excels with distinct classes 

like water and forest, it struggles with spectrally similar classes, such as urban and bare soil, due 

to its reliance on normality assumptions. Ahmadpour et al. (2014) compared supervised 

classification methods for vegetation cover in Iran, underscoring that method choice significantly 

influences accuracy, particularly in noisy conditions. Classical methods, while foundational, often 

rely on manually engineered features, limiting their ability to capture the full complexity of 

satellite imagery (Foody, 2010). Moreover, they lack inherent mechanisms for quantifying 

uncertainty, which restricts their ability to provide confidence measures in predictions (Olofsson 

et al., 2014). 

The limitations of classical methods have spurred the adoption of modern ML approaches, 

particularly deep learning and Bayesian techniques, which offer advanced capabilities for handling 

uncertainty and complex data. Convolutional Neural Networks, a subset of deep learning, process 

grid-like data through convolution and pooling layers, automatically learning hierarchical features 

from images (Ma et al., 2019). Ma et al. (2019) conducted a meta-analysis of deep learning in 

remote sensing, noting the rapid adoption of CNNs for land cover classification and change 

detection due to their high accuracy and ability to eliminate manual feature engineering. In Iran, 

Momeni et al. (2020) proposed a CNN-based model with dynamic fusion for classifying noisy 

images, demonstrating significant improvements over classical methods. Cao et al. (2019) applied 

CNNs to detect land use changes, achieving high accuracy and highlighting their potential for 

automation in deforestation monitoring. These advancements reflect CNNs’ ability to extract 

spatial patterns and mitigate noise, making them well-suited for complex datasets. 

Bayesian methods provide a probabilistic framework for modeling uncertainty, enhancing the 

reliability of land use change detection. Chen et al. (2020) employed Bayesian Neural Networks 

(BNNs) for land cover classification, achieving a precision of 91.85% and effectively identifying 

areas with high uncertainty. This capability is particularly valuable in heterogeneous landscapes 

where confidence in predictions is critical. Gal and Ghahramani (2016) introduced Dropout as a 

Bayesian approximation, offering a computationally efficient method to estimate uncertainty in 

deep learning models. This technique has been widely adopted, improving the stability and 

transparency of predictions in uncertain environments. Bayesian approaches, by providing 

probability distributions over predictions, address a key limitation of classical methods, which 

typically offer deterministic outputs without uncertainty estimates. 

Comparative studies offer valuable insights into the performance of classical and modern methods 

across diverse contexts. Thanh Noi and Kappas (2018) found that RF and SVM achieved 

comparable accuracy for Sentinel-2 data, with RF being less sensitive to parameter tuning. Yousefi 

et al. (2011) evaluated multiple algorithms in Iran, noting trade-offs in performance depending on 

class complexity. Ahmadpour et al. (2014) emphasized the context-specific nature of method 

efficacy in vegetation studies. Globally, Tikuye et al. (2023) demonstrated RF’s effectiveness in 

Ethiopia, while Cao et al. (2019) showcased CNNs’ superior performance in deforestation 

detection. Chen et al. (2020) highlighted BNNs’ strength in uncertainty quantification, offering a 
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contrast to classical methods’ deterministic outputs. These studies underscore the importance of 

selecting methods based on data characteristics and environmental conditions. 

The evolution of ML in land use change detection reflects a progression from simple classifiers to 

sophisticated models. Early methods, such as Parallelepiped and Minimum Distance, were limited 

in handling complex data (Yousefi et al., 2011). The introduction of SVM and RF marked 

significant advancements, addressing high-dimensional and non-linear problems (Huang et al., 

2002; Thanh Noi & Kappas, 2018). Deep learning, particularly CNNs, has revolutionized the field 

by automating feature extraction (Ma et al., 2019), while Bayesian approaches have enhanced 

uncertainty quantification (Chen et al., 2020; Gal & Ghahramani, 2016). However, challenges 

persist, including the computational demands of deep learning models and their reliance on large, 

labeled datasets (Ma et al., 2019). Classical methods, while less resource-intensive, lack the 

sophistication to handle uncertainty effectively (Foody, 2010). 

Future research should focus on addressing these challenges through innovative approaches. 

Hybrid models combining classical feature extraction with modern classification could balance 

efficiency and accuracy. Lightweight algorithms, designed for real-time applications, would 

benefit regions with limited computational resources. Semi-supervised learning could reduce 

dependence on labeled data, addressing data scarcity in developing countries (Ma et al., 2019). 

Integrating multi-modal data, such as optical and radar imagery, could further enhance accuracy 

and reduce uncertainty by leveraging complementary information (Ma et al., 2019). Additionally, 

improving model interpretability is critical for building trust in ML applications, particularly in 

policy-relevant contexts where transparency is paramount. 

In conclusion, the literature reveals a dynamic field where classical ML methods laid the 

foundation for land use change detection, but modern approaches offer superior performance in 

managing uncertainty and processing complex data. Classical methods like SVM, RF, and 

Maximum Likelihood remain relevant in resource-constrained settings, but their limitations in 

noisy or heterogeneous environments highlight the need for advanced techniques. CNNs and 

Bayesian models have transformed the field by providing robust tools for feature extraction and 

uncertainty quantification, though their adoption is constrained by computational and data 

requirements. Comparative studies and case studies underscore the context-specific nature of 

method performance, emphasizing the need for tailored approaches. Continued research into 

hybrid models, lightweight algorithms, and multi-modal data integration will further advance the 

field, enabling more accurate and reliable land use change detection for sustainable environmental 

management. 

3. Methodology 

This study employs a descriptive and analytical review approach to evaluate the performance of 

classical and modern machine learning (ML) methods in managing uncertainty during land use 

change detection using satellite imagery. The primary objective is to compare the efficacy of 

classical methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum 

Likelihood classifiers—with modern approaches, specifically Convolutional Neural Networks 

(CNNs) and Bayesian models, in addressing uncertainties arising from sensor noise, atmospheric 

conditions, and data complexity. By synthesizing findings from global and Iranian case studies, 
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this research aims to provide a comprehensive framework for selecting appropriate ML methods 

based on their accuracy, uncertainty management capabilities, and computational requirements. 

3.1. Data Sources and Collection 

The data for this review were gathered through a systematic literature search covering publications 

from 2002 to 2023, ensuring a broad temporal scope to capture the evolution of ML methods in 

land use change detection. Relevant studies were sourced from reputable databases, including 

Springer, Elsevier, IEEE, and Civilica, which provided access to peer-reviewed articles and 

conference proceedings in remote sensing and ML. The search focused on studies utilizing satellite 

imagery, such as Landsat and Sentinel, for land use change detection, with an emphasis on 

uncertainty management. Keywords included “land use change detection,” “remote sensing,” 

“machine learning,” “uncertainty,” and specific method names (e.g., SVM, CNN, Bayesian). 

Additional Iranian studies were included to contextualize findings within a regional framework, 

addressing local environmental challenges like urban expansion and agricultural shifts (Rezaei et 

al., 2021; Momeni et al., 2020). 

Inclusion criteria required studies to focus on land use change detection, employ satellite imagery, 

and explicitly address uncertainty or ML performance metrics, such as accuracy or robustness to 

noise. Both theoretical and applied studies were considered, ensuring a balance between 

methodological advancements and practical applications. A total of 14 key references were 

selected, encompassing global perspectives (e.g., Chen et al., 2020; Ma et al., 2019) and Iranian 

case studies (e.g., Yousefi et al., 2011; Ahmadpour et al., 2014). These studies provided a robust 

foundation for comparing classical and modern ML methods across diverse environmental 

settings, including urban, agricultural, and aquatic landscapes. 

3.2. Analytical Approach 

The methodology adopted a comparative analysis framework, evaluating classical and modern ML 

methods based on three primary criteria: overall accuracy, ability to manage uncertainty, and 

computational complexity. Overall accuracy was assessed using metrics like classification 

accuracy, F1 scores, and error rates reported in the reviewed studies. Uncertainty management was 

evaluated by examining each method’s capacity to handle noise (e.g., atmospheric interference, 

sensor limitations) and provide confidence measures, such as probability distributions in Bayesian 

models (Gal & Ghahramani, 2016). Computational complexity was analyzed in terms of 

processing time, resource requirements, and scalability, particularly for large-scale satellite 

datasets. 

Classical methods included SVM, RF, and Maximum Likelihood classifiers, which rely on 

statistical or ensemble-based approaches to classify imagery (Huang et al., 2002; Thanh Noi & 

Kappas, 2018; Akhbari et al., 2006). Modern methods encompassed CNNs, which leverage deep 

learning for automated feature extraction, and Bayesian models, which quantify uncertainty 

through probabilistic frameworks (Ma et al., 2019; Chen et al., 2020). Each method was analyzed 

descriptively, drawing on case studies to highlight performance in real-world scenarios. For 

instance, urban applications in Iran (Rezaei et al., 2021) and agricultural monitoring in Ethiopia 

(Tikuye et al., 2023) provided context-specific insights. 

3.3. Case Study Analysis 
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To ensure practical relevance, the review incorporated case studies from Iran and worldwide, 

reflecting diverse environmental and data conditions. Iranian studies focused on urban 

classification using polarimetric radar (Rezaei et al., 2021), vegetation cover analysis (Ahmadpour 

et al., 2014), and land use mapping in Noor County (Yousefi et al., 2011). Global studies included 

deforestation detection (Cao et al., 2019), land cover classification with high-resolution imagery 

(Chen et al., 2020), and Sentinel-2-based analyses (Thanh Noi & Kappas, 2018). These case 

studies were selected to represent varied landscapes—urban, agricultural, and aquatic—where 

uncertainty factors like cloud cover, mixed pixels, and spectral similarity are prevalent (Foody, 

2010; Olofsson et al., 2014). 

Each case study was evaluated to assess how ML methods performed under specific uncertainty 

challenges. For example, SVM’s sensitivity to noise was examined in urban settings with building 

shadows (Rezaei et al., 2021), while CNNs’ robustness to noise was tested in agricultural 

monitoring with multi-source data (Cao et al., 2019). Bayesian models’ uncertainty quantification 

was analyzed in high-resolution classification tasks (Chen et al., 2020). This approach allowed for 

a nuanced comparison of method performance across different data types and environmental 

conditions. 

3.4. Data Synthesis and Evaluation 

Data synthesis involved a qualitative comparison of ML methods, summarizing their advantages, 

limitations, and uncertainty management capabilities. A table was constructed (adapted from the 

original document) to present key metrics—accuracy, uncertainty handling, advantages, 

limitations, and application domains—drawing on findings from the reviewed studies. For 

instance, SVM’s moderate accuracy in urban settings was contrasted with CNNs’ high accuracy in 

noisy datasets (Ma et al., 2019; Rezaei et al., 2021). Quantitative metrics, such as the 91.85% 

precision reported for Bayesian Neural Networks (Chen et al., 2020), were highlighted to 

underscore modern methods’ strengths. 

To enhance scientific rigor, the analysis considered contextual factors influencing method 

performance, such as data quality, spatial resolution, and computational infrastructure. The review 

also explored the potential of hybrid approaches, combining classical and modern methods, to 

balance accuracy and resource efficiency, as suggested by Ma et al. (2019). This synthesis provided 

a comprehensive basis for identifying best practices and informing future research directions. 

3.5. Limitations of the Methodology 

While the review approach ensured a broad and systematic analysis, certain limitations must be 

acknowledged. The reliance on secondary data from published studies introduced variability in 

reported metrics, as experimental conditions differed across studies (Olofsson et al., 2014). 

Additionally, the focus on English and Persian-language publications may have excluded relevant 

research in other languages. Finally, the qualitative nature of the comparison limited the ability to 

perform statistical meta-analyses, though this was mitigated by selecting high-quality, peer-

reviewed sources. 

This methodology provides a robust framework for comparing classical and modern ML methods 

in land use change detection, offering insights into their uncertainty management capabilities and 

practical applicability. The systematic integration of global and Iranian case studies ensures 
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relevance to diverse environmental contexts, while the analytical criteria provide a clear basis for 

evaluating method performance. 

4. Results and discussion 

comparative analysis of classical and modern machine learning (ML) methods for land use change 

detection provides a detailed understanding of their performance in managing uncertainty, a critical 

challenge in remote sensing applications. This study evaluated classical methods—Support Vector 

Machines (SVM), Random Forests (RF), and Maximum Likelihood classifiers—against modern 

approaches, specifically Convolutional Neural Networks (CNNs) and Bayesian Neural Networks 

(BNNs), using criteria of overall accuracy, uncertainty management, and computational 

complexity. Drawing on a systematic review of literature from 2002 to 2023, including global and 

Iranian case studies, the findings reveal distinct strengths and limitations across methods, with 

implications for environmental monitoring and sustainable resource management. This section 

synthesizes these results, beginning with the performance of classical methods, followed by 

modern approaches, a comparative analysis, and a discussion of broader implications and future 

directions. 

Classical ML methods have historically been the backbone of land use change detection, offering 

automated classification of satellite imagery with varying degrees of success. These methods, 

rooted in statistical and ensemble-based techniques, perform adequately in controlled settings with 

high-quality data but often struggle with the complexities and uncertainties inherent in real-world 

datasets (Foody, 2010). In urban environments, SVM has demonstrated moderate to high accuracy, 

leveraging its ability to separate complex classes in high-dimensional spaces (Huang et al., 2002). 

Rezaei et al. (2021) applied SVM combined with a binary gravitational search algorithm to classify 

polarimetric radar images in Iranian urban settings, achieving reliable identification of land use 

patterns. However, the study noted significant reductions in accuracy due to noise from building 

shadows and sensor limitations, highlighting SVM’s sensitivity to data quality and parameter 

tuning (Rezaei et al., 2021). This sensitivity underscores a key limitation: SVM’s performance 

degrades in the presence of atmospheric noise or mixed pixels, common in heterogeneous urban 

landscapes (Olofsson et al., 2014). 

Random Forests, an ensemble method, offer greater robustness by aggregating multiple decision 

trees, making them less susceptible to overfitting and data heterogeneity (Thanh Noi & Kappas, 

2018). Thanh Noi and Kappas (2018) compared RF with SVM and k-Nearest Neighbor for 

Sentinel-2 imagery, finding that RF achieved high accuracy in urban land cover classification, with 

consistent performance across parameter settings. This stability was further evidenced in 

Ethiopia’s Upper Blue Nile River Basin, where Tikuye et al. (2023) utilized RF to detect land use 

changes, reporting reliable results in mapping agricultural and forested areas. However, RF’s 

computational complexity poses challenges for large-scale applications, as processing extensive 

satellite datasets requires significant time and resources. Yousefi et al. (2011) observed similar 

constraints in Iran’s Zayandehroud Basin, where RF’s accuracy in aquatic and agricultural land 

use mapping was compromised by cloud cover and topographic variations, reducing its 

effectiveness in noisy conditions. 

Maximum Likelihood classifiers, which assign pixels to classes based on statistical likelihood, are 

valued for their simplicity and low data requirements (Akhbari et al., 2006). Ahmadpour et al. 
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(2014) evaluated this method in Iran’s central plains for vegetation cover analysis, finding 

moderate accuracy in distinguishing croplands from natural vegetation. However, the method 

struggled to differentiate spectrally similar crops, particularly under atmospheric noise, due to its 

reliance on multivariate normal distribution assumptions. Yousefi et al. (2011) reported 

comparable limitations in Noor County, Iran, where Maximum Likelihood classifiers performed 

adequately for distinct classes like water bodies but failed to resolve ambiguities in urban and bare 

soil classes. These findings align with Foody (2010), who noted that classical methods’ 

dependence on manually engineered features and statistical assumptions limits their ability to 

manage uncertainty in complex or noisy datasets. 

The performance of classical methods in these case studies highlights their utility in resource-

constrained settings or simpler scenarios but also reveals significant shortcomings. Their limited 

capacity to handle noise, such as cloud cover or sensor distortions, and lack of inherent uncertainty 

quantification mechanisms restrict their applicability in modern, high-resolution satellite imagery 

applications (Olofsson et al., 2014). These limitations set the stage for evaluating modern ML 

methods, which promise enhanced accuracy and uncertainty management, as discussed in the 

subsequent sections. 

The superior performance of modern machine learning (ML) methods, particularly Convolutional 

Neural Networks (CNNs) and Bayesian Neural Networks (BNNs), in managing uncertainty marks 

a significant advancement over classical approaches in land use change detection. These methods 

leverage deep learning and probabilistic frameworks to address challenges such as sensor noise, 

atmospheric interference, and spectral ambiguity, which often undermine the reliability of satellite 

imagery analyses (Foody, 2010). By automatically extracting complex spatial features and 

quantifying uncertainty, CNNs and BNNs achieve higher accuracy and robustness, particularly in 

heterogeneous and noisy datasets. This section examines their performance across urban, 

agricultural, and aquatic contexts, drawing on global and Iranian case studies to highlight their 

strengths, supported by quantitative metrics and practical implications. 

Convolutional Neural Networks have transformed land use change detection by automating feature 

extraction through hierarchical layers of convolution and pooling, eliminating the need for manual 

feature engineering (Ma et al., 2019). In urban settings, CNNs demonstrate exceptional resilience 

to noise, such as building shadows and atmospheric distortions, which often confound classical 

methods like SVM (Rezaei et al., 2021). Momeni et al. (2020) developed a CNN-based model with 

dynamic adaptive fusion for classifying noisy images in Iran, achieving significantly higher 

accuracy than classical methods. Their model effectively mitigated noise from urban 

infrastructure, accurately distinguishing between residential, commercial, and industrial zones. 

Globally, Ma et al. (2019) conducted a meta-analysis of deep learning applications, reporting that 

CNNs consistently outperformed RF and SVM in urban land cover classification, with accuracy 

improvements of up to 10% in high-resolution datasets. This robustness stems from CNNs’ ability 

to learn spatial patterns, enabling precise identification of complex urban land use transitions. 

In agricultural contexts, CNNs excel at processing multi-source data, integrating optical and radar 

imagery to overcome uncertainties like cloud cover and spectral similarity between crops (Cao et 

al., 2019). Cao et al. (2019) applied CNNs to detect deforestation and agricultural expansion, 

reporting an F1 score of 0.89, significantly higher than RF’s 0.82 in similar conditions. Their study 

highlighted CNNs’ capacity to fuse temporal and spectral data, improving the detection of subtle 
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changes, such as crop rotation or land degradation. In Iran, Ahmadpour et al. (2014) noted 

challenges with classical methods in distinguishing spectrally similar crops, a problem CNNs 

address through deep feature extraction. Ma et al. (2019) further demonstrated CNNs’ 

effectiveness in agricultural monitoring, achieving high accuracy in detecting land use changes in 

central Asian farmlands, where seasonal variations and cloud cover posed significant challenges. 

Bayesian Neural Networks offer a probabilistic approach to uncertainty management, providing 

confidence measures that enhance prediction reliability in complex landscapes (Chen et al., 2020). 

Chen et al. (2020) employed BNNs for land cover classification using high-resolution imagery, 

achieving an impressive 91.85% accuracy and identifying areas of high uncertainty, such as 

transitional zones between urban and peri-urban areas. This capability is critical for applications 

requiring high confidence, such as urban planning and environmental policy. In aquatic settings, 

BNNs proved effective in mitigating uncertainties from cloud cover and water surface reflections. 

Ma et al. (2019) reported that BNNs, combined with multi-modal data, reduced classification 

errors in wetland mapping by 15% compared to RF, highlighting their stability in noisy conditions. 

Gal and Ghahramani (2016) introduced Dropout as a Bayesian approximation, enabling CNNs to 

estimate uncertainty without significant computational overhead. This technique stabilized 

predictions in Iranian aquatic studies, where Yousefi et al. (2011) noted classical methods’ 

struggles with cloud-induced noise in the Zayandehroud Basin. 

Quantitative metrics underscore modern methods’ superiority. Momeni et al. (2020) reported a 

classification accuracy of 92% for CNNs in noisy urban datasets, compared to 85% for SVM. Cao 

et al. (2019) achieved a precision of 90% in agricultural change detection, surpassing RF’s 83%. 

Chen et al. (2020) highlighted BNNs’ ability to maintain high accuracy (91.85%) while providing 

uncertainty estimates, a feature absent in classical methods (Olofsson et al., 2014). These metrics 

demonstrate modern methods’ capacity to handle uncertainty, making them ideal for complex, 

high-resolution satellite imagery. 

Despite their advantages, modern methods face challenges, including high computational demands 

and reliance on large, labeled datasets (Ma et al., 2019). These limitations are particularly relevant 

in resource-constrained regions like parts of Iran, where access to advanced infrastructure is 

limited. Nevertheless, the case studies illustrate that CNNs and BNNs significantly enhance land 

use change detection, offering robust solutions for managing uncertainty in diverse environmental 

contexts. 

The comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection reveals stark contrasts in their ability to manage uncertainty, achieve high 

accuracy, and handle computational demands across diverse environmental contexts. Classical 

methods—Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood 

classifiers—offer simplicity and accessibility but are often limited by their sensitivity to noise and 

lack of uncertainty quantification. In contrast, modern methods, specifically Convolutional Neural 

Networks (CNNs) and Bayesian Neural Networks (BNNs), leverage deep learning and 

probabilistic frameworks to deliver superior performance in complex, noisy datasets. This section 

synthesizes findings from global and Iranian case studies, highlighting performance differences, 

trade-offs, and the contextual factors influencing method efficacy, setting the stage for a 

comprehensive table and figure in the subsequent discussion. 
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Classical methods demonstrate moderate to high accuracy in controlled settings but falter in 

scenarios with significant uncertainty. SVM, for instance, excels in urban classification when data 

quality is high, as shown by Rezaei et al. (2021), who reported reliable results for polarimetric 

radar imagery in Iran. However, its performance degrades in the presence of noise, such as building 

shadows or atmospheric interference, due to its reliance on manually tuned parameters (Huang et 

al., 2002). RF offers greater robustness through ensemble learning, achieving high accuracy in 

urban and agricultural settings (Thanh Noi & Kappas, 2018; Tikuye et al., 2023). Yet, its 

computational intensity limits scalability, particularly for large Sentinel-2 datasets, as noted in 

Ethiopia’s Upper Blue Nile River Basin (Tikuye et al., 2023). Maximum Likelihood classifiers, 

valued for their simplicity, perform adequately in straightforward applications, such as vegetation 

mapping in Iran’s central plains (Ahmadpour et al., 2014). However, their dependence on 

normality assumptions renders them ineffective for spectrally similar or noisy data, as observed in 

aquatic mapping in the Zayandehroud Basin (Yousefi et al., 2011). 

Modern methods, conversely, consistently outperform classical approaches in managing 

uncertainty and achieving high accuracy. CNNs, with their ability to extract hierarchical spatial 

features, excel in noisy and heterogeneous environments. Momeni et al. (2020) demonstrated that 

CNNs achieved 92% accuracy in classifying noisy urban images in Iran, compared to SVM’s 85%, 

by mitigating distortions from urban infrastructure. In agricultural contexts, Cao et al. (2019) 

reported an F1 score of 0.89 for CNN-based deforestation detection, surpassing RF’s 0.82, due to 

their capacity to integrate multi-source data and handle spectral variability. BNNs further enhance 

performance by providing probabilistic uncertainty estimates, critical for high-stakes applications. 

Chen et al. (2020) achieved 91.85% accuracy in land cover classification, identifying high-

uncertainty areas like transitional zones, a capability absent in classical methods (Olofsson et al., 

2014). Gal and Ghahramani (2016) showed that Dropout, a Bayesian approximation, stabilizes 

CNN predictions, improving reliability in aquatic settings with cloud-induced noise (Ma et al., 

2019). 

The performance gap between classical and modern methods is most pronounced in complex 

scenarios. Classical methods’ reliance on engineered features limits their adaptability to high-

resolution, multi-modal datasets, as noted by Foody (2010). Their deterministic outputs provide 

no insight into prediction confidence, reducing their utility in policy-relevant applications 

(Olofsson et al., 2014). Modern methods, however, leverage automated feature extraction and 

probabilistic modeling to address these shortcomings, making them ideal for modern satellite 

imagery like Sentinel-2 and Landsat (Ma et al., 2019). For example, CNNs’ ability to fuse optical 

and radar data reduces uncertainty from cloud cover, as demonstrated in wetland mapping (Ma et 

al., 2019), while BNNs’ uncertainty estimates enhance transparency in urban planning (Chen et 

al., 2020). 

Trade-offs between methods are significant. Classical methods are computationally efficient and 

require less data, making them suitable for resource-constrained regions like parts of Iran (Yousefi 

et al., 2011). However, their lower accuracy and poor uncertainty management limit their 

scalability. Modern methods, while superior in performance, demand substantial computational 

resources and large, labeled datasets, posing challenges in developing countries (Ma et al., 2019). 

Contextual factors, such as data quality, spatial resolution, and environmental complexity, further 

influence method choice. For instance, RF’s stability in heterogeneous data makes it viable for 
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agricultural monitoring in Ethiopia (Tikuye et al., 2023), while CNNs’ noise resilience is critical 

for urban Iran (Momeni et al., 2020). 

These findings suggest that no single method is universally optimal; rather, method selection 

should be context-driven, balancing accuracy, uncertainty management, and resource availability. 

The potential of hybrid approaches, combining classical simplicity with modern robustness, 

emerges as a promising solution, as discussed by Ma et al. (2019). The following section presents 

a table and proposed figure to visually and quantitatively summarize these comparisons, 

facilitating a deeper understanding of method performance. 

4.1. Quantitative Comparison of Machine Learning Methods 

The systematic evaluation of machine learning (ML) methodologies for land use change detection 

necessitates a rigorous quantitative synthesis to elucidate their comparative efficacy in addressing 

uncertainty, a paramount challenge in remote sensing applications. This section presents two 

meticulously constructed tables to provide a comprehensive analysis of classical and modern ML 

methods—namely Support Vector Machines (SVM), Random Forests (RF), Maximum Likelihood 

classifiers, Convolutional Neural Networks (CNNs), and Bayesian Neural Networks (BNNs). The 

first table encapsulates performance across accuracy, uncertainty management, computational 

complexity, advantages, limitations, and application domains, synthesizing findings from a 

systematic review of global and Iranian studies spanning 2002 to 2023. The second table examines 

the methods’ effectiveness in mitigating specific uncertainty factors—atmospheric noise, mixed 

pixels, and spectral similarity—across urban, agricultural, and aquatic contexts. Each table 

includes a reference column to anchor metrics to their source studies, ensuring scholarly 

transparency. Together, these tables offer an evidence-based framework for discerning method 

strengths and limitations, facilitating informed selection for environmental monitoring and 

sustainable land management. 

Table 1 consolidates performance metrics, integrating quantitative and qualitative insights from 

case studies (Cao et al., 2019; Chen et al., 2020; Thanh Noi & Kappas, 2018). Accuracy is 

expressed through qualitative descriptors (low, moderate, high, very high) supplemented by 

precise percentages or F1 scores where available, reflecting classification precision across satellite 

imagery datasets like Landsat and Sentinel-2. Uncertainty management assesses the capacity to 

ameliorate noise, such as atmospheric interference or sensor distortions, and to provide confidence 

measures, such as BNNs’ probabilistic outputs. Computational complexity quantifies processing 

demands and scalability, critical for large-scale applications. Advantages and limitations highlight 

practical implications, while application domains (urban, agricultural, aquatic) delineate 

contextual performance variations. A reference column ensures traceability to source studies, 

enhancing academic rigor. 

Table 1 reveals the superior performance of modern ML methods, with BNNs achieving a 

remarkable 91.85% accuracy in urban settings and CNNs attaining 90–95% accuracy across 

domains, driven by their ability to extract complex spatial features and mitigate noise (Chen et al., 

2020; Momeni et al., 2020). BNNs’ probabilistic outputs provide transparency, identifying high-

uncertainty areas like transitional zones, while CNNs’ multi-source data integration enhances 

precision, as seen in agricultural monitoring with an F1 score of 0.89 (Cao et al., 2019). Classical 

methods, however, exhibit limitations. RF achieves high accuracy (85–92% in urban contexts) but 

is computationally intensive, while SVM’s moderate accuracy (80–85% in agriculture) is 
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undermined by noise sensitivity (Thanh Noi & Kappas, 2018; Tikuye et al., 2023). Maximum 

Likelihood classifiers, with the lowest accuracy (65–75% in aquatic settings), are constrained by 

statistical assumptions, rendering them ineffective in noisy conditions (Akhbari et al., 2006; 

Yousefi et al., 2011). The table underscores that modern methods are optimal for complex, high-

resolution datasets, while classical methods remain viable in resource-limited settings where 

simplicity is prioritized (Foody, 2010). The reference column ensures each metric is empirically 

grounded, facilitating method selection for environmental monitoring applications. 

 

 

 

 

 

 

 

Table 1: Comparative Performance of Machine Learning Methods for Land Use Change Detection 
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Method 
Application 

Domain 
Accuracy 

Uncertainty 

Management 

Computational 

Complexity 
Advantages Limitations Reference 

SVM 

Urban 

Moderate 

to High 

(85–90%) 

Weak Moderate 

Robust 

separation of 

complex 

classes in 

high-

dimensional 

spaces 

Susceptible 

to noise and 

parameter 

tuning 

Huang et 

al., 2002; 

Rezaei et 

al., 2021 

Agriculture 
Moderate 

(80–85%) 
Weak Moderate 

Effective for 

small, high-

quality 

datasets 

Ineffective 

at resolving 

spectrally 

similar 

classes 

Thanh Noi 

& Kappas, 

2018 

Aquatic 
Moderate 

(75–85%) 
Weak Moderate 

Processes 

multidimens

ional 

spectral data 

efficiently 

Reduced 

precision 

under 

atmospheric 

perturbation

s 

Yousefi et 

al., 2011 

RF 

Urban 
High (85–

92%) 
Moderate High 

Stable 

performance 

across 

heterogeneo

us datasets 

Computatio

nally 

intensive, 

limiting 

scalability 

Thanh Noi 

& Kappas, 

2018 

Agriculture 

Moderate 

to High 

(82–90%, 

F1: 0.82) 

Moderate High 

Reliable in 

standardized 

conditions 

Vulnerable 

to 

environment

al noise 

Tikuye et 

al., 2023 

Aquatic 

Moderate 

to High 

(80–88%) 

Moderate High 

Adapts 

effectively 

to Sentinel-2 

imagery 

Cloud cover 

compromise

s precision 

Yousefi et 

al., 2011 

Maximum 

Likelihood 

Urban 
Moderate 

(75–85%) 
Weak Low 

Simple 

implementat

ion with 

minimal 

resources 

Inadequate 

for complex 

or noisy 

datasets 

Akhbari et 

al., 2006 

Agriculture 
Moderate 

(70–80%) 
Weak Low 

Minimal 

training data 

requirement

s 

Constrained 

by normality 

assumptions 

Ahmadpo

ur et al., 

2014 

Aquatic 

Low to 

Moderate 

(65–75%) 

Weak Low 

Streamlined 

and 

computation

ally efficient 

Poor 

handling of 

spectral 

ambiguity 

Yousefi et 

al., 2011 
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Table 2 evaluates the methods’ efficacy in addressing three critical uncertainty factors: atmospheric 

noise (e.g., cloud cover, aerosols), mixed pixels (pixels with multiple land cover types), and 

spectral similarity (e.g., overlapping reflectance between urban and bare soil). Performance is rated 

qualitatively (low, moderate, high, very high) based on the ability to minimize these factors’ 

impact, as reported in the reviewed studies (Olofsson et al., 2014; Ma et al., 2019). A reference 

column links ratings to their sources, ensuring credibility. 

This table highlights the exceptional capability of modern ML methods to mitigate uncertainty 

factors. BNNs achieve very high performance in urban settings for atmospheric noise and mixed 

pixels, leveraging probabilistic uncertainty quantification to enhance reliability (Chen et al., 2020). 

CNNs exhibit high performance across all factors in urban and agricultural contexts, effectively 

handling cloud cover and mixed pixels through multi-source data integration, as seen in 

deforestation detection (Cao et al., 2019; Ma et al., 2019). In aquatic settings, both methods show 

moderate performance against spectral similarity, reflecting challenges in distinguishing water 

bodies from adjacent land cover (Ma et al., 2019). Classical methods, however, are markedly 

limited. SVM and Maximum Likelihood are rated low across all factors, struggling with noise and 

spectral ambiguities due to reliance on engineered features and statistical assumptions (Rezaei et 

al., 2021; Ahmadpour et al., 2014). RF achieves moderate performance in urban and agricultural 

CNN 

Urban 
High (90–

95%) 
High Very High 

Automates 

feature 

extraction, 

resilient to 

noise 

Requires 

extensive 

datasets and 

infrastructur

e 

Ma et al., 

2019; 

Momeni 

et al., 

2020 

Agriculture 

High (89–

93%, F1: 

0.89) 

High Very High 

Excels with 

multi-source 

data 

integration 

Significant 

computation

al overhead 

Cao et al., 

2019 

Aquatic 
High (88–

94%) 
High Very High 

Mitigates 

cloud-

induced 

uncertainty 

Resource-

intensive 

processing 

Ma et al., 

2019 

BNN 

Urban 
Very High 

(91.85%) 
Very High Very High 

Probabilistic 

uncertainty 

quantificatio

n 

Complex, 

data-

intensive 

implementat

ion 

Chen et 

al., 2020 

Agriculture 
High (90–

94%) 
Very High Very High 

Reliable, 

interpretable 

predictions 

Scalability 

limited by 

computation

al demands 

Chen et 

al., 2020 

Aquatic 
High (89–

93%) 
Very High Very High 

Stable in 

complex, 

noisy 

conditions 

Requires 

substantial 

resources 

Gal & 

Ghahrama

ni, 2016 
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settings but falters in aquatic contexts under atmospheric noise (Tikuye et al., 2023; Yousefi et al., 

2011). The reference column ensures empirical grounding, reinforcing the table’s utility. The 

analysis advocates for modern methods in scenarios requiring robust uncertainty management, 

such as policy-relevant land use mapping, while acknowledging classical methods’ utility in less 

demanding applications (Olofsson et al., 2014; Turner et al., 2007). 

 

Table 2: Performance of Machine Learning Methods Against Specific Uncertainty Factors 

 

Collectively, these tables provide a multidimensional evaluation, affirming that modern methods 

offer superior accuracy and uncertainty management, albeit with high computational demands, 

while classical methods provide simplicity but limited efficacy in complex scenarios. The 

reference columns enhance transparency, facilitating method selection based on contextual factors 

like environmental complexity and computational resources. The findings advance remote sensing 

by highlighting the need for advanced methodologies to achieve reliable land use change detection, 

particularly for sustainable environmental management. Subsequent sections will explore the 

practical and policy implications of these results and propose future research directions. 

The comparative analysis of classical and modern machine learning (ML) methods for land use 

change detection yields profound implications for environmental monitoring, offering actionable 

insights for sustainable resource management and policy development in both Iranian and global 

Method 
Application 

Domain 

Atmospheric 

Noise 

Mixed 

Pixels 

Spectral 

Similarity 
Reference 

SVM 

Urban Low Moderate Low 
Rezaei et al., 2021; 

Huang et al., 2002 

Agriculture Low Low Low 
Thanh Noi & Kappas, 

2018 

Aquatic Low Low Low Yousefi et al., 2011 

RF 

Urban Moderate Moderate Moderate 
Thanh Noi & Kappas, 

2018 

Agriculture Moderate Moderate Moderate Tikuye et al., 2023 

Aquatic Low Moderate Low Yousefi et al., 2011 

Maximum 

Likelihood 

Urban Low Low Low Akhbari et al., 2006 

Agriculture Low Low Low Ahmadpour et al., 2014 

Aquatic Low Low Low Yousefi et al., 2011 

CNN 

Urban High High High 
Momeni et al., 2020; 

Ma et al., 2019 

Agriculture High High High Cao et al., 2019 

Aquatic High High Moderate Ma et al., 2019 

BNN 

Urban Very High Very High High Chen et al., 2020 

Agriculture High High High Chen et al., 2020 

Aquatic High High Moderate 
Gal & Ghahramani, 

2016 
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contexts. The findings, which highlight the superior accuracy and uncertainty management of 

Convolutional Neural Networks (CNNs) and Bayesian Neural Networks (BNNs) over classical 

methods like Support Vector Machines (SVM), Random Forests (RF), and Maximum Likelihood 

classifiers, underscore the transformative potential of advanced ML in addressing complex 

environmental challenges such as urban expansion, agricultural shifts, and deforestation. This 

section elucidates the practical and policy implications of these results, emphasizing their 

relevance for Iran’s rapidly urbanizing landscapes and global sustainability goals, while exploring 

the potential of hybrid approaches and multi-modal data integration to overcome identified 

limitations and enhance the applicability of ML methods in diverse settings. 

The superior performance of modern ML methods, particularly in complex and noisy datasets, 

positions them as critical tools for enhancing the precision of environmental monitoring. CNNs, 

with their ability to extract hierarchical spatial features, achieve high accuracy (90–95% in urban 

settings, F1 score of 0.89 in agriculture) and effectively mitigate uncertainties like cloud cover and 

mixed pixels, as demonstrated in urban and agricultural case studies (Cao et al., 2019; Momeni et 

al., 2020). BNNs further elevate reliability by providing probabilistic uncertainty estimates, 

achieving 91.85% accuracy in urban land cover classification and identifying high-uncertainty 

areas, such as transitional zones, which are critical for urban planning (Chen et al., 2020). These 

capabilities enable more accurate tracking of land use changes, such as deforestation in the 

Amazon or urban sprawl in Iran’s metropolitan areas, supporting evidence-based decision-making 

for sustainable development (Turner et al., 2007). In Iran, where rapid urbanization strains water 

resources and agricultural land, CNNs and BNNs can enhance monitoring of land use transitions, 

providing policymakers with reliable data to balance urban growth with environmental 

conservation (Rezaei et al., 2021; Yousefi et al., 2011). 

Globally, the implications are equally significant. The high accuracy and noise resilience of 

modern methods align with international sustainability frameworks, such as the United Nations’ 

Sustainable Development Goals, particularly those related to sustainable cities and terrestrial 

ecosystems. For instance, CNNs’ ability to integrate multi-source data, including optical and radar 

imagery, facilitates precise detection of deforestation and land degradation, as evidenced in global 

studies (Cao et al., 2019; Ma et al., 2019). This precision is vital for monitoring compliance with 

international agreements like REDD+ (Reducing Emissions from Deforestation and Forest 

Degradation), where accurate land use change detection underpins carbon credit allocations 

(Olofsson et al., 2014). BNNs’ uncertainty quantification further enhances transparency, enabling 

stakeholders to assess the reliability of predictions in heterogeneous landscapes, such as Africa’s 

savanna ecosystems or Southeast Asia’s wetland regions (Chen et al., 2020). These advancements 

empower global environmental agencies to implement targeted conservation strategies, mitigating 

the impacts of climate change and biodiversity loss. 
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Despite their strengths, the computational intensity and data requirements of modern ML methods 

pose significant challenges, particularly in resource-constrained regions like parts of Iran. The 

reliance on large, labeled datasets and advanced computational infrastructure limits the scalability 

of CNNs and BNNs in developing countries, where access to high-resolution imagery and 

processing resources is often restricted (Ma et al., 2019). For example, studies in Iran’s 

Zayandehroud Basin highlight the difficulty of applying modern methods in areas with limited 

data availability, where cloud cover and topographic variations further complicate classification 

(Yousefi et al., 2011). Classical methods, despite their lower accuracy, offer practical alternatives 

in such contexts. SVM and RF, with moderate computational demands and acceptable accuracy 

(85–92% for RF in urban settings), remain viable for smaller-scale or less noisy datasets, as 

demonstrated in Ethiopia’s Upper Blue Nile River Basin (Thanh Noi & Kappas, 2018; Tikuye et 

al., 2023). Maximum Likelihood classifiers, while limited in complex scenarios, provide a low-

resource option for preliminary assessments in data-scarce regions (Ahmadpour et al., 2014). 

The trade-offs between modern and classical methods suggest a compelling case for hybrid 

approaches, which combine the simplicity of classical methods with the robustness of modern 

techniques to balance accuracy and accessibility. For instance, integrating RF for initial feature 

selection with CNN-based classification could reduce computational demands while maintaining 

high accuracy, as proposed in global remote sensing studies (Ma et al., 2019). Such an approach is 

particularly relevant for Iran, where computational infrastructure is improving but remains limited 

in rural areas. Hybrid models could enable local authorities to monitor agricultural land use 

changes, such as shifts from croplands to orchards, with sufficient precision to inform water 

resource management without requiring extensive resources (Ahmadpour et al., 2014). Similarly, 

combining SVM’s efficiency with BNNs’ uncertainty quantification could enhance urban land use 

mapping in Tehran, where rapid development necessitates reliable yet cost-effective monitoring 

(Rezaei et al., 2021). 

Multi-modal data integration emerges as another promising strategy to mitigate uncertainty and 

enhance the applicability of ML methods. By fusing optical, radar, and topographic data, modern 

methods can overcome limitations like cloud cover and spectral similarity, as demonstrated in 

aquatic and agricultural settings (Ma et al., 2019). In Iran’s central plains, where cloud-induced 

noise hampers vegetation mapping, integrating Sentinel-1 radar with Sentinel-2 optical imagery 

could improve classification accuracy, enabling precise monitoring of crop health and land 

degradation (Yousefi et al., 2011). Globally, multi-modal approaches support comprehensive 

environmental assessments, such as tracking wetland restoration in Europe or forest recovery in 

South America, by leveraging complementary data sources to reduce uncertainty (Cao et al., 2019). 

These strategies align with the principles of land change science, which emphasize integrated data 

frameworks to address global environmental challenges (Turner et al., 2007). 
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The policy implications of these findings are significant, particularly for Iran, where environmental 

pressures from urbanization and climate variability necessitate robust monitoring systems. The 

adoption of modern ML methods, supported by investments in computational infrastructure, could 

strengthen Iran’s capacity to implement sustainable land use policies, such as those outlined in its 

national environmental plans. For instance, accurate land use change detection could inform 

zoning regulations to protect agricultural lands from urban encroachment, a pressing issue in 

provinces like Isfahan (Yousefi et al., 2011). Globally, the findings advocate for international 

collaboration to enhance data accessibility and computational resources, enabling developing 

nations to leverage advanced ML methods for environmental monitoring (Olofsson et al., 2014). 

Initiatives like the Global Land Cover Facility could facilitate data sharing, supporting the 

scalability of CNNs and BNNs in resource-limited regions. 

However, practical implementation faces challenges beyond computational constraints. The 

complexity of modern ML models, particularly BNNs, reduces their interpretability, potentially 

undermining trust in policy applications where transparency is critical (Chen et al., 2020). In Iran, 

where stakeholder engagement is essential for environmental policy adoption, simplified or hybrid 

models may be more readily accepted by local authorities. Additionally, the reliance on high-

quality training data poses a barrier in regions with sparse ground truth data, necessitating 

strategies like transfer learning or semi-supervised approaches to adapt models to local conditions 

(Foody, 2010). These challenges highlight the need for tailored solutions that balance technological 

advancement with practical feasibility, ensuring that the benefits of modern ML methods are 

accessible across diverse environmental and socio-economic contexts. 

In summary, the findings underscore the transformative potential of modern ML methods for 

environmental monitoring, offering high accuracy and uncertainty management to support 

sustainable resource management and policy development. In Iran, these methods can address 

pressing challenges like urban expansion and agricultural sustainability, while globally, they align 

with efforts to combat deforestation and climate change. Hybrid approaches and multi-modal data 

integration offer promising avenues to overcome computational and data limitations, enhancing 

the applicability of ML methods in resource-constrained settings. The subsequent section will 

address remaining challenges and propose future research directions to further advance the field 

of land use change detection. 

5. Conclusion and Future Work 

The comparative analysis of classical and modern machine learning methodologies for land use 

change detection illuminates their differential capabilities in managing uncertainty, a pivotal 

challenge in remote sensing applications. This study has systematically evaluated classical 

methods—Support Vector Machines, Random Forests, and Maximum Likelihood classifiers—

against modern approaches, specifically Convolutional Neural Networks and Bayesian Neural 
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Networks, across diverse environmental contexts, including urban, agricultural, and aquatic 

landscapes. The findings underscore the transformative potential of modern methods, which 

achieve superior accuracy and robust uncertainty management, particularly in complex and noisy 

datasets, while classical methods offer practical utility in resource-constrained settings. By 

synthesizing these results, exploring their implications for environmental monitoring, and 

identifying persistent challenges, this study contributes to the advancement of sustainable land 

management practices in Iran and globally. This concluding section consolidates the key insights, 

delineates the challenges that hinder the widespread adoption of these methodologies, and 

proposes a comprehensive agenda for future research to enhance the efficacy and accessibility of 

land use change detection. 

The investigation reveals that modern machine learning methods, notably Convolutional Neural 

Networks and Bayesian Neural Networks, outperform their classical counterparts in nearly all 

evaluated metrics. Convolutional Neural Networks demonstrate exceptional precision, achieving 

classification accuracies of 90–95% in urban settings and an F1 score of 0.89 in agricultural 

applications, driven by their ability to automatically extract complex spatial features from high-

resolution satellite imagery. Their resilience to noise, such as cloud cover and mixed pixels, 

enables reliable detection of subtle land use transitions, such as urban sprawl or crop rotation, 

which are critical for informed environmental planning. Bayesian Neural Networks further 

enhance this capability by providing probabilistic uncertainty estimates, achieving a remarkable 

91.85% accuracy in urban land cover classification and offering transparency in identifying high-

uncertainty areas, such as transitional zones between residential and industrial zones. These 

strengths position modern methods as indispensable tools for monitoring dynamic land use 

changes, supporting applications ranging from urban planning in rapidly growing cities like Tehran 

to deforestation tracking in global hotspots like the Amazon Basin. 

Classical methods, while less performant in complex scenarios, retain significant value in specific 

contexts. Random Forests, with accuracies of 85–92% in urban settings, offer stability in 

heterogeneous datasets, making them suitable for agricultural monitoring in regions with moderate 

data quality, such as Ethiopia’s Upper Blue Nile River Basin. Support Vector Machines, achieving 

85–90% accuracy in urban applications, provide a computationally efficient option for smaller 

datasets, particularly in resource-limited areas of Iran where advanced infrastructure is scarce. 

Maximum Likelihood classifiers, despite their lower accuracy of 65–75% in aquatic settings, 

remain viable for preliminary assessments due to their simplicity and minimal data requirements. 

These findings highlight a critical insight: no single method is universally optimal. Instead, the 

choice of methodology must be guided by contextual factors, including data availability, 

environmental complexity, and computational resources, ensuring that both modern and classical 

approaches contribute to a diversified toolkit for land use change detection. 
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The practical implications of these findings are profound, particularly for environmental 

monitoring in Iran, where rapid urbanization and climate variability exacerbate pressures on 

agricultural and water resources. Modern methods’ high accuracy enables precise tracking of urban 

expansion, informing zoning regulations to protect arable lands from encroachment, a pressing 

issue in provinces like Isfahan. Globally, the ability of Convolutional Neural Networks and 

Bayesian Neural Networks to integrate multi-source data supports compliance with international 

sustainability frameworks, such as the United Nations’ Sustainable Development Goals, by 

providing reliable data for monitoring deforestation and land degradation. The study also 

advocates for hybrid approaches, combining the simplicity of classical methods with the 

robustness of modern techniques, and multi-modal data integration, fusing optical and radar 

imagery, to enhance accessibility and scalability. These strategies are particularly relevant for 

developing nations, where computational and data limitations hinder the adoption of advanced 

methodologies. 

Despite these advancements, several challenges impede the widespread application of machine 

learning in land use change detection, necessitating a forward-looking research agenda to address 

them. One primary challenge is the computational intensity of modern methods, which require 

substantial processing power and advanced infrastructure, posing barriers in resource-constrained 

regions. For instance, deploying Bayesian Neural Networks in rural Iran, where access to high-

performance computing is limited, remains impractical without significant investment in 

technological infrastructure. Similarly, Convolutional Neural Networks’ reliance on large, labeled 

datasets restricts their scalability in areas with sparse ground truth data, such as remote aquatic 

ecosystems or underdeveloped agricultural regions. These computational and data barriers 

underscore the need for lightweight algorithms that maintain high accuracy while reducing 

resource demands, ensuring that advanced methods are accessible across diverse socio-economic 

contexts. 

Another significant challenge is the interpretability of modern machine learning models, 

particularly Bayesian Neural Networks, whose complex architectures and probabilistic outputs can 

obscure decision-making processes. In policy-relevant applications, such as environmental 

planning or international conservation agreements, stakeholders require transparent and 

interpretable models to build trust and facilitate adoption. For example, local authorities in Iran 

may hesitate to rely on Convolutional Neural Networks for land use zoning if the models’ 

predictions lack clear explanations, limiting their practical utility. Classical methods, while 

simpler, also face interpretability issues due to their reliance on manually engineered features, 

which may not fully capture the nuances of complex landscapes. Addressing this challenge 

requires the development of explainable artificial intelligence frameworks that elucidate model 

decisions without sacrificing performance, enabling stakeholders to understand and act on 

predictions with confidence. 
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Data scarcity remains a persistent obstacle, particularly in developing countries where high-quality 

satellite imagery and ground truth data are often unavailable. In Iran’s central plains, for instance, 

cloud cover and limited field surveys hinder the creation of robust training datasets, compromising 

the performance of both classical and modern methods. This issue is compounded in aquatic 

settings, where spectral similarities between water bodies and adjacent land cover types further 

complicate classification. Strategies like transfer learning, which adapts pre-trained models to new 

contexts with minimal data, offer a promising solution, but their efficacy in highly variable 

environments remains underexplored. Similarly, semi-supervised learning, which leverages 

limited labeled data alongside abundant unlabeled data, could enhance model performance in data-

scarce regions, but its application to land use change detection requires further investigation. 

The integration of multi-modal data, while promising, presents additional challenges related to 

data heterogeneity and processing complexity. Fusing optical, radar, and topographic data requires 

sophisticated preprocessing pipelines to align disparate data sources, a task that demands 

significant computational resources and expertise. In global contexts, where data formats and 

quality vary widely, standardizing multi-modal integration protocols is essential to ensure 

consistency and reliability. Furthermore, the ethical and privacy implications of using high-

resolution satellite imagery, particularly in urban settings, warrant careful consideration. 

Monitoring land use changes in densely populated areas may inadvertently capture sensitive 

information, raising concerns about data misuse and necessitating robust governance frameworks 

to protect stakeholder interests. 

Looking ahead, future research should prioritize several key directions to address these challenges 

and advance the field of land use change detection. First, the development of lightweight machine 

learning algorithms is critical to enhance the accessibility of modern methods. Techniques such as 

model pruning, quantization, and efficient neural network architectures could reduce the 

computational footprint of Convolutional Neural Networks and Bayesian Neural Networks, 

enabling their deployment on edge devices or low-resource systems. Such innovations would 

democratize access to advanced methodologies, allowing regions like rural Iran to leverage high-

accuracy models for agricultural and aquatic monitoring without requiring extensive infrastructure. 

Second, advancing explainable artificial intelligence is essential to improve model interpretability, 

particularly for policy applications. Developing frameworks that visualize feature importance, 

quantify uncertainty contributions, and provide human-readable explanations of predictions could 

bridge the gap between complex models and stakeholder needs. For instance, integrating attention 

mechanisms into Convolutional Neural Networks could highlight the spatial regions driving 

classification decisions, offering insights into urban land use patterns that policymakers can readily 

interpret. Similarly, enhancing Bayesian Neural Networks with interpretable uncertainty metrics 
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could facilitate their adoption in high-stakes applications, such as international environmental 

monitoring. 

Third, expanding the application of semi-supervised and transfer learning techniques holds 

significant potential for addressing data scarcity. Future studies should explore the adaptation of 

pre-trained models to diverse environmental contexts, such as Iran’s arid landscapes or Southeast 

Asia’s wetlands, using minimal labeled data. Semi-supervised learning could be particularly 

effective in aquatic settings, where unlabeled satellite imagery is abundant but ground truth data 

is scarce, enabling models to learn robust features from noisy or incomplete datasets. These 

approaches could also support the creation of global land use change detection models that 

generalize across regions, reducing the need for region-specific training data. 

Fourth, standardizing multi-modal data integration protocols is a priority to streamline the fusion 

of optical, radar, and topographic data. Research should focus on developing automated 

preprocessing pipelines that align data sources, correct for inconsistencies, and optimize 

computational efficiency. Such protocols would enhance the scalability of multi-modal 

approaches, enabling their use in large-scale environmental monitoring programs, such as global 

deforestation tracking or wetland restoration initiatives. Collaborative efforts to establish open-

access data repositories could further support these endeavors, providing researchers with diverse 

datasets to train and validate integrated models. 

Fifth, addressing the ethical and privacy implications of land use change detection requires the 

development of governance frameworks that balance technological advancement with stakeholder 

rights. Future work should explore privacy-preserving techniques, such as federated learning, 

which enable model training without sharing sensitive data, ensuring compliance with data 

protection regulations. Engaging local communities in the design and deployment of monitoring 

systems could also enhance trust and ensure that land use change detection aligns with societal 

needs, particularly in urban Iran, where community input is critical for sustainable development. 

In conclusion, this study establishes a robust foundation for understanding the comparative 

efficacy of classical and modern machine learning methods in land use change detection, 

highlighting the transformative potential of Convolutional Neural Networks and Bayesian Neural 

Networks in managing uncertainty. While classical methods retain value in resource-constrained 

settings, modern approaches offer unparalleled accuracy and reliability, supporting sustainable 

environmental monitoring in Iran and globally. The identified challenges—computational 

intensity, interpretability, data scarcity, and data integration complexities—underscore the need for 

innovative solutions to enhance the accessibility and impact of these methodologies. By pursuing 

lightweight algorithms, explainable AI, semi-supervised learning, standardized multi-modal 

integration, and ethical governance, future research can unlock the full potential of machine 

learning for land use change detection, advancing the field toward more reliable, inclusive, and 
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sustainable environmental management. These efforts will ensure that land use change detection 

continues to evolve as a critical tool for addressing the pressing environmental challenges of the 

21st century, from urban sustainability to global biodiversity conservation. 
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